
HAL Id: hal-02434837
https://hal.science/hal-02434837

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributing deep neural networks for maximising
computing capabilities and power efficiency in swarm

Victor Gacoin, Anthony Kolar, Chengfang Ren, Régis Guinvarc’H

To cite this version:
Victor Gacoin, Anthony Kolar, Chengfang Ren, Régis Guinvarc’H. Distributing deep neural networks
for maximising computing capabilities and power efficiency in swarm. 2019 IEEE International Sym-
posium on Circuits and Systems (ISCAS), May 2019, Sapporo, Japan. �10.1109/ISCAS.2019.8702672�.
�hal-02434837�

https://hal.science/hal-02434837
https://hal.archives-ouvertes.fr

Distributing deep neural networks for maximising
computing capabilities and power efficiency in

swarm
Victor Gacoin∗, Anthony Kolar†, Chengfang Ren∗ and Regis Guinvarc’h∗

∗SONDRA, CentraleSupélec, France
Email: victor.gacoin@gmail.com, chengfang.ren@centralesupelec.fr, regis.guinvarch@centralesupelec.fr

†GeePs, Group of electrical engineering - Paris, CNRS,
CentraleSupélec, Univ. Paris-Sud, Univ. Paris-Saclay, Sorbonne Univ., France

Email: anthony.kolar@centralesupelec.fr

Abstract—Deploying neural networks models over embedded
devices have an increased interest and many works is ongoing on
that topic. Energy consumption, model sizes and inference time
are critical issues as explained in the literature. In the context
of IoT and edge computing, tradeoff have been studied in order
to get a low cost but rapid answer, robust to connection issue
exploiting early exiting or distributing deep neural networks.
Those approaches exploits the cloud as an endpoint, balancing
the load with respect to different computing capabilities. In this
paper, we propose to extend those approaches to networks of
embedded devices such as a swarm of drones, where every device
has the same computing capabilities (in terms of energy and
speed). Computing load may be balanced among the whole swarm
in order to maximise either the lifetime of specific devices or
lifetime of the whole swarm. We develop criteria to best cut
and distribute those networks, validate them through power
measurement and express the different tradeoffs we have to
address.

I. INTRODUCTION

As popularity of deep neural networks has increased over
the past few years, such as computing capabilities, they
have become much more bigger and energy consuming. It
appears though that deploying neural networks models over
embedded devices has an increased interest too and research
on that topic is ongoing, especially regarding inference. Energy
consumption, model sizes and inference time are important
issues as explained in [1]. Common approach is to speed up
inference optimising the structure of the network, reducing
size models by various techniques such as SplitNet [2] which
divides semantically parameters sets allowing at the same time
parallelisation ; or by compressing, pruning and quantization
as described in [3] with their ”Deep Compression” framework.
Even hardware architecture are developed to optimise some
of those techniques (for instance efficient inference engine
[4] specifically adapted to inference of compressed neural
networks). Tradeoffs are also addressed to study, given specific
use case, in what extent a design can be modified in order to
keep an acceptable accuracy [5].

In the context of IoT and edge computing, tradeoffs have
been studied in order to get a low cost but rapid answer, robust
to connection issue, exploiting early exiting [6] or balancing

the load over the Cloud, the Edge and end devices [7] [8].
Those approaches exploits the cloud as an endpoint, sharing
the workload with respect to different computing capabilities
and network latencies. More precisely, minimizing latencies
is used as a principal criteria to define their distributed
topologies.

We propose to extend in a context of embedded devices
networks such as swarm of drones, where every device has the
same computing capabilities (in terms of energy and speed).
Computing load may be balanced among the whole swarm
in order to maximise either the lifetime of specific devices
(ones who carry sensors for instance) or lifetime of the whole
swarm.

In this paper we try to adapt existing neural network design
to a specific use case: distributing inference stage on several
homogeneous embedded devices in an energy and computing
efficient way. In the first part, splitting principles and criteria
are formally introduced. We then apply latter methodologies
to Resnet20 in second part, comparing different topologies
and their accuracy and studying their energy footprint. Finally
results are compiled with respect to our specific criteria and
discuss these results.

II. SPLITTING PRINCIPLES

A. Linear graph

The basic idea is to split a given neural network into several
parts. A neural network is usually implemented as a graph
made of vertices (layers) and edges (tensors). A naive ap-
proach consists in identifying linear subgraphs, split them and
extract them, interfacing inputs and outputs properly. Literally,
given a linear graph G(V,E), V being its set of vertices and E
its set of edges, vertices can be listed v1, v2, ..., vn such that the
edges are defined by ei = {vi, vi+1}, i = 1, 2, ..., n − 1. We
define a set of subgraphs (Gi(Vi, Ei))1≤i<I as an ordered par-
tition of its sets V et E with ∀i ∈ [1, I], Vi = (vj)ki−1≤j<ki

with k0 = 1, kI = n and ∀i ∈ [1, I], ki−1 < ki
Let’s define a cost function C which quantifies the cost of

a task with respect to a specific criterion. The latter can be an
energy based cost function or a time based cost function for

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

instance. A task is performed by a vertex vi of the graph. It
takes as an input a data block b and produces the input of the
next vertex which is b′. Then b′ = f(b) with f a deterministic
function which could be linear or non-linear. Therefore, the
cost of calculation of f by vertex i is C(fi(b)). Let’s now
define transfer of data block b from vertex i to vertex j,
Ti→j(b).

As described in fog computing, if C(Tk→k+1(b)) +C(f1 ◦
... ◦ fk(b)) < C(fk+1 ◦ ... ◦ fn(b)), then it’s worth trans-
ferring block b from vertex i to vertex j since this one
is more efficient. Furthermore, a split is said balanced if
C(Tk→k+1(b)) + C(f1 ◦ ... ◦ fk(b)) ≈ C(fk+1 ◦ ... ◦ fn(b)).

Another advantage of such dividing is that it allows piping
calculations. Imagine a stream of inputs on a sensor device,
like a camera and the process has to be performed locally. Rate
of processing, in other word the time taken by the device to
process one frame, is a limitation. It is possible to reduce the
charge of the sensor, delegating computations to other devices
which are not, or less, busy.

B. Layer splitting
A graph can be split either horizontally or vertically. A

vertical cut consists in dividing a linear graph into two linear
subgraphs as defined before. It is equivalent to removing an
edge. A horizontal cut is trickier, it aims at duplicating a
linear sub-graph dividing its number of parameters, like if
the graph was unzipped. One of these sub-graphs is called a
branch as depicted on Fig 1. Assume a linear graph is made of
convolutional nodes that consist of 2 ∗ n convolutional filters.
This node can be divided into 2 convolutional nodes made of
n filters. Then the input edge (tensor) is duplicated in order
to feed each sub-graph and output tensors have to be merged
(concatenated) to form input of node k.

Therefore there are 2 main free parameters. The layer(s)
where the network is eventually merged back k and the number
of split n. Experiments are done to study the effect of k on
the global accuracy for a given n.

Fig. 1. Horizontal 2-split

While vertical split does not change the neural network
topology, a horizontal split does. A network can be vertically
split after training of the baseline model. However horizontal
split remove some dependencies and parameters.

C. Performance criteria
When splitting a network vertically, forming a head and a

tail, the goal is to maximise its accuracy while minimising

the cost derived from its structure. Then, considering S as the
layers set, let’s define the performance as, ∀k ∈ S:

Pk =
acck

C(Tk→k+1) + C(f1 ◦ ... ◦ fk) + C(fk+1 ◦ ... ◦ fn)

with:

• acck the average accuracy of the split model. Calculated
from experimental results.

• C(Tk→k+1) the transfert cost of output tensor of node k
to node k + 1. It’s based on the assumption that latency
is proportional to the size of the tensor.

• C(f1◦...◦fk)+C(fk+1◦...◦fn) the average computation
cost of the model, which is the sum of the average
computation cost of the submodels. Calculated from
experimental results.

This logic is still valid if the head is horizontally split,
considering the cost of the head as a composed cost of its
branches.

Considering this performance function, the objective is to
find k that:

• maximises P ie arg max
k

Pk

• balances the split

III. APPLICATION TO RESNET

A. Models generation

In order to demonstrate our methodology, Resnet20 [9] has
been chosen as a baseline model for its relatively small size
(approximately 280k parmaters) and its specific design. Other
well-known convolutional neural networks would have been
chosen, the approach would be similar as well.
Resnet is made of 3 groups of 3 convolutional blocks. For
clarity each block will be considered as a single complex
layer. Therefore this new representation is made of 16 layers.
Fig 2 shows output size of those layers which is directly
proportional to the number of convolutional filters of each
block and to input size. Then it actually shows how much
computation each layer requires. One can see first layers are
the most computation intensive.

Fig. 2. Resnet layer output size

As mentionned before, horizontal split has an impact on
the overall accuracy. Models must be trained given a specific
topology. Table I show the evolution of accuracy according
to different models. Models are trained on CIFAR10 dataset
[10] made of 32x32 colour images belonging to 10 different
categories. The training is performed over 50000 images and
10000 are used for testing.

TABLE I
SPLIT RESNET20 NETWORKS STATISTICS

k acc loss
1-split 0.915 0.4267

2-split
6 0.9099 0.4491
9 0.9083 0.4471
12 0.8886 0.4728

4-split
6 0.9132 0.4438
9 0.9061 0.4560
12 0.8578 0.5198

While 1-split model corresponds to the baseline Resnet20,
6 different networks have been built from baseline: a 2-split
and 4-split architecture with a vertical cut at k ∈ {6, 9, 12}.
Values of k coincide to the last layer of each main block. They
have been chosen to be consistent with the way Resnet20 is
designed. Models are built with TensorFlow [11] in python,
using a custom version available on the online repository. As
a first observation of Table I, accuracy decreases with k which
seems logical since there are fewer dependencies between
convolutional filters and parameters due to splits. However
the accuracy drop remains below 1% for k ∈ {6, 9}, and is
higher for k = 12. This table merely gives hints to address
the tradeoff between accuracy drop and number of splits but
it remains dependant of the specific use case.

B. Power consumption

Now that the performance drop has been determined for
different splits, let’s consider the overall energy cost, for
a device first and then for a swarm of devices. Note that
consumption depends on the implementation. The purpose of
the study is not to optimise the inference time on a given
platform but rather to have an idea of the differences between
the different networks architectures.

For this purpose an assembling similar to [12] has been
used. A 100mΩ shunt (R) is used to monitor real time current
drawn by the Raspberry Pi 3 Model B.

+5V

R

V

V1

V

V2

GND

Fig. 3. Derivation of USB alimentation for power measurement

USB oscilloscope Digilent digital discovery 2 is used to
measure V1 and V2. V1 is acquired on the first channel, V2

on the second with a precision of 14 bits. The power P is
computed on the fly on the third channel as V1∗10∗V2 derived
from:

P =
V1 ∗ V2

R

CPU consumption is measured in 5 states:
• idle: nothing is running but necessary services: dbus,

dhcpd, dphys-swapfiles, fake-hwclock, networking, ssh,
udev

• downloading: simulated with the tool speedtest-cli
• uploading: idem
• loading: loading network parameter into memory takes

some time and is easily identifiable while measuring the
computation

• computing: corresponds to an approximate cpu load of
370%

Tensions are picked when states are stabilised, averaging over
512 ms to minimise side effects due to non relevant activity
variations. Peak values are shown on Fig 4 as well, even if
only mean values will be considered to get numerical values.

Fig. 4. Power consumption of different states (in Watt)

Since in normal mode it is difficult to segregate the state
of the Raspberry Pi 3 Model B, we will define Pidle as the
average of power consumption of idle, uploading, downloading
and loading states shown on Fig 4. Pc corresponds to the
power consumption of computing mode. Then, it gives Pidle =
1.99W and Pc = 3.03W .

Consumption due to data transfer over wifi can be ignored
since it does not increase significantly the overall power
consumption. Then the split is balanced if C(f1◦ ...◦fk(b)) ≈
C(fk+1 ◦ ... ◦ fn(b)) and we can reduce the performance to

∀k ∈ S, Pk =
acck

C(f1 ◦ ... ◦ fk) + C(fk+1 ◦ ... ◦ fn)

Furthermore, consumption cost is directly proportional to
execution time, therefore to inference time of submodels.

C. Performances of models

In the previous section power consumption costs have been
determined. The overall performance of a model can therefore

be computed given the formula. We retained only 2-split model
in this part to demonstrate the approach. The head corresponds
to the subgraph G1(V1, E1) with V1 = (vj)1≤j<k and the tail
to the subgraph G2(V2, E2) with V2 = (vj)k≤j<n (head and
tail are the result of a simple vertical cut). A branch is the
subgraph G1 ”unzipped” i.e. where each convolutional node
has half the number of filters than original node (result of
horizontal cut on the head).

For a given energy Ea, assuming a homogenous consump-

tion of the device, its lifetime in computing mode is tc =
Ea

Pc

and in idle mode tidle =
Ea

Pidle

TABLE II
INFERENCE TIME IN SECONDS ON RASPBERRY PI 3 MODEL B OF A

2-SPLIT RESNET20

k 6 9 12
head 0.05410 0.0669 0.08826
tail 0.05142 0.04052 0.00462
branch 0.02971 0.03455 0.05809

The total inference time of a distributed network is thead +
ttail for a simple vertical split (resp. tbranch + ttail for a
horizontal split) and the total equivalent consumption is given
by Pc ∗ (thead + ttail) (resp. Pc ∗ (2 ∗ tbranch + ttail), both
branches are computed in parallel by 2 different devices).

Values shown on Table II give the inference time of net-
works and sub-networks for input made of a single image
(batch of size 1) averaged over 1000 inferences. The reference
time is the one of baseline model and is tbase =0.097s. For
k = 6 one can see that inference times are balanced between
head and tail. Then, a device handling head inference and
another handling tail inference will consume about the same
energy.

Imagine two scenarii:
• 2 devices sharing the workload
• 2 devices not sharing the workload, one taking over when

the first is dead (no more energy available)
Which scenario optimises the number of inference Ninf ?

• first scenario: lifetime is tc =
Ea

Pc
and the rate is limited

by the longest calculation tmax = max(thead, tbranch)
(we discard time lost at the first inference considering
devices are in computing permanent mode). Then,

Ninf =
tc

tmax
i.e.

Ninf

Ea
=

1

Pc ∗ tmax
= 6.1

• second scenario: device 1 is computing during tc time,
then device 2 which was in idle state takes over for a
duration of t′c =

1

Pc
∗ (Ea − tc ∗ Pidle). Then,

N ′inf =
tc + t′c
tbase

i.e.
Ninf

Ea
=

1

Pc ∗ tbase
∗(2−Pidle

Pc
) = 4.5

Therefore more inferences can be done per unit of energy
using first scenario.

It’s worth noting that a criterion on tmax can be determined
from the second scenario:

N ′inf < Ninf i.e. tmax <
tc ∗ tbase
tc + t′c

The same logic can be applied with 3 devices noticing
than tbranch and ttail are about the same for k = 9. We get
8.3 inferences per unit of energy with 3 devices sharing the
workload against 4.9 with a relay of 3 devices.

TABLE III
PERFORMANCE OF DIFFERENT SCENARII

base balanced 1-split balanced 2-split
P 3.09 2.85 2.74
N 3.4 6.1 8.3

Table III sums up the different results. It shows that the
baseline model gets the best performance in terms of energy.
That’s consistent since inference time of submodels are poorer
than baseline as shown in Table II. However (much) more
inferences can be done with balanced submodels shared among
2 (resp. 3) devices. There is therefore a tradeoff between the
number of inference N and the performance of the model P .

IV. CONCLUSION

This paper aimed at balancing load of a deep neural
network inference among several embedded devices in order
to maximise their lifetime. First, we propose a methodology
to cut properly complex models into submodels in order to
balance computation across devices. Then we have shown that
for a given initial energy, more inferences can be performed
in a realistic scenario by the group of devices sharing their
ressources.

However, it only focuses on stacking inferences, in other
words keeping devices busy in computing mode. But different
scenarii could be imagined in order to increase the lifetime
of the distributed system, fixing inference rate for instance,
allowing devices to come back to an idle state between 2
inferences.

REFERENCES

[1] S. Ge, Z. Luo, S. Zhao, X. Jin, and X. Zhang, “Compressing deep neural
networks for efficient visual inference,” in 2017 IEEE International
Conference on Multimedia and Expo (ICME), July 2017, pp. 667–672.

[2] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “SplitNet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in Proceedings of the 34th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
D. Precup and Y. W. Teh, Eds., vol. 70. International Convention
Centre, Sydney, Australia: PMLR, 06–11 Aug 2017, pp. 1866–1874.
[Online]. Available: http://proceedings.mlr.press/v70/kim17b.html

[3] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” International Conference on Learning Representations (ICLR),
2016.

[4] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” in 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), June 2016, pp. 243–254.

[5] S. Shankar, D. Robertson, Y. Ioannou, A. Criminisi, and R. Cipolla,
“Refining architectures of deep convolutional neural networks,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2016, pp. 2212–2220.

[6] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), Dec 2016, pp.
2464–2469.

[7] ——, “Distributed deep neural networks over the cloud, the edge and end
devices,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), June 2017, pp. 328–339.

[8] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’17. New
York, NY, USA: ACM, 2017, pp. 615–629. [Online]. Available:
http://doi.acm.org/10.1145/3037697.3037698

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 770–778.

[10] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” vol. 1, 01 2009.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[12] F. Kaup, P. Gottschling, and D. Hausheer, “Powerpi: Measuring and
modeling the power consumption of the raspberry pi,” 39th Annual IEEE
Conference on Local Computer Networks, pp. 236–243, 2014.

