Wireless Link Quality Prediction in IoT Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Wireless Link Quality Prediction in IoT Networks

Résumé

The knowledge of link quality in IoT networks will allow a more accurate selection of wireless links to build the routes used by data gathering. Therefore, the number of retransmissions on these links is decreased, leading to a shorter end-to-end latency, a better end-to-end reliability and a larger network lifetime. In this paper, we propose to predict link quality by means of machine learning techniques applied on two metrics: RSSI and PDR. The accuracy obtained by Logistic Regression, Linear Support Vector Machine, Support Vector Machine and Random Forest classifier is obtained on the traces of a real IoT network deployed at Grenoble.
Fichier principal
Vignette du fichier
HAL_PEMWN2019_LQE.pdf (540.18 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02432805 , version 1 (08-01-2020)

Identifiants

  • HAL Id : hal-02432805 , version 1

Citer

Miguel Landry Foko Sindjoung, Pascale Minet. Wireless Link Quality Prediction in IoT Networks. PEMWN 2019 - 8th IFIP/IEEE International Conference on Performance Evaluation and Modeling inWired andWireless Networks, Nov 2019, Paris, France. ⟨hal-02432805⟩
130 Consultations
414 Téléchargements

Partager

More