Smoothed discrepancy principle as an early stopping rule in RKHS - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Smoothed discrepancy principle as an early stopping rule in RKHS

Résumé

In this paper we work on the estimation of a regression function that belongs to a polynomial decay reproducing kernel Hilbert space (RKHS). We describe spectral filter framework for our estimator that allows us to deal with several iterative algorithms: gradient descent, Tikhonov regularization, etc. The main goal of the paper is to propose a new early stopping rule by introducing smoothing parameter for empirical risk of the estimator in order to improve the previous results [1] on discrepancy principle. Theoretical justifications as well as simulations experiments for the proposed rule are provided.
Fichier principal
Vignette du fichier
sfds2019-1.pdf (258.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02427696 , version 1 (03-01-2020)
hal-02427696 , version 2 (30-07-2020)
hal-02427696 , version 3 (24-08-2020)

Identifiants

  • HAL Id : hal-02427696 , version 2

Citer

Yaroslav Averyanov, Alain A. Celisse. Smoothed discrepancy principle as an early stopping rule in RKHS. 51es Journées de Statistique, Jun 2019, Nancy, France. ⟨hal-02427696v2⟩
239 Consultations
179 Téléchargements

Partager

More