POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES FOR NEARLY RADIAL MEASURES - Archive ouverte HAL
Article Dans Une Revue Acta Mathematica Sinica English Series Année : 2022

POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES FOR NEARLY RADIAL MEASURES

Li Ming Wu
  • Fonction : Auteur

Résumé

If Poincaré inequality has been studied by Bobkov for radial measures, few is known about the logarithmic Sobolev inequalty in the radial case. We try to fill this gap here using different methods: Bobkov's argument and super-Poincaré inequalities, direct approach via L1-logarithmic Sobolev inequalities. We also give various examples where the obtained bounds are quite sharp. Recent bounds obtained by Lee-Vempala in the logconcave bounded case are refined for radial measures.
Fichier principal
Vignette du fichier
CGW-radial-submit.pdf (343.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02418658 , version 1 (19-12-2019)

Identifiants

Citer

Patrick Cattiaux, Arnaud Guillin, Li Ming Wu. POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES FOR NEARLY RADIAL MEASURES. Acta Mathematica Sinica English Series, 2022, 38 (8), pp.1377-1398. ⟨10.1007/s10114-022-0501-3⟩. ⟨hal-02418658⟩
112 Consultations
282 Téléchargements

Altmetric

Partager

More