Nonlinear optimal control using deep reinforcement learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Nonlinear optimal control using deep reinforcement learning

Résumé

We propose a shift of paradigm for the control of fluid flows based on the application of deep reinforcement learning (DRL). This strategy is quickly spreading in the machine learning community and it is known for its connection with nonlinear control theory. The origin of DRL can be traced back to the generalization of the optimal control to nonlinear problems, leading —in the continuous formulation— to the Hamilton-Jacobi-Bellman (HJB) equation, of which DRL aims at providing a discrete, data-driven approximation. The only a priori requirement in DRL is the definition of an instantaneous reward as measure of the relevance of an action when the system is in a given state. The value function is then defined as the expected cumulative rewards and it is the objective to be maximized. The control action and the value function are approximated by means of neural networks. In this work, we clarify the connection between DRL and rediscuss our recent results for the control of the Kuramoto-Sivashinsky (KS) equation in one-dimension [4] by means of a parametric analysis.
Fichier principal
Vignette du fichier
BSACM_NonLinConDRL.pdf (1.4 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02411768 , version 1 (29-11-2024)

Identifiants

Citer

Michele Alessandro Bucci, Onofrio Semeraro, Lionel Mathelin, Laurent Cordier, Alexandre Allauzen, et al.. Nonlinear optimal control using deep reinforcement learning. 9th IUTAM Symposium on Laminar-Turbulent Transition (IUTAM transition 2019), IUTAM – International Union of Theoretical and Applied Mechanics, Sep 2019, London, United Kingdom. pp.279-290, ⟨10.1007/978-3-030-67902-6_24⟩. ⟨hal-02411768⟩
98 Consultations
0 Téléchargements

Altmetric

Partager

More