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Nonlinear Optimal Control using Deep
Reinforcement Learning

Michele Alessandro Bucci, Onofrio Semeraro, Alexandre Allauzen, Laurent
Cordier and Lionel Mathelin

Abstract We propose a shift of paradigm for the control of fluid flows based on the
application of deep reinforcement learning (DRL). This strategy is quickly spreading
in the machine learning community and it is known for its connection with nonlinear
control theory. The origin of DRL can be traced back to the generalization of the
optimal control to nonlinear problems, leading – in the continuous formulation –
to the Hamilton-Jacobi-Bellman (HJB) equation, of which DRL aims at providing
a discrete, data-driven approximation. The only a priori requirement in DRL is the
definition of an instantaneous reward as measure of the relevance of an action when
the system is in a given state. The value function is then defined as the expected
cumulative rewards and it is the objective to be maximized. The control action and
the value function are approximated by means of neural networks. In this work, we
clarify the connection between DRL and rediscuss our recent results for the control
of the Kuramoto-Sivashinsky (KS) equation in one-dimension [4] by means of a
parametric analysis.
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1 Introduction

Control theorymethods have attracted research in fluid dynamics due to the scientific
challenges and the potential impact that such a technology might have in several
engineering sectors, ranging from aeronautics to naval and road transport. Further
impulse to these developments is undoubtedly due to the current environmental
needs. Carbon dioxide emissions are considered among the causes of global warming
and any reduction of these emissions can be beneficial in this regard. In this work,
we focus on active control based on reinforcement learning (RL) algorithms, one of
the main sub-fields of machine learning [7, 3]; RL is mainly used in robotics and
has gained popularity in the last years for the super-human performance achieved in
solving tasks as complex as solving games such as go, [14]. A possible definition
can be given by quoting a recent work by [11]: "RL [...] studies how to use past data
to enhance the future manipulation of a dynamical system". Not surprisingly, this
definition could also apply to control theory algorithms: RL is deeply rooted into
optimal control theory [9, 12, 11] as it relies on data-driven based solutions to the
Bellman equation [2]. Indeed, while sharing the theoretical ground of the optimal
control, RL is fully data-driven and, as such, is characterized by the applicability
of data-based approaches, like the ability of using only a limited amount of sensor
measurements for determining an optimal control policy.

Following this rationale, we aim at leveraging on RL strategies for the closed-
loop nonlinear control. We have demonstrated in our recent work [4] that a nonlinear,
chaotic system governed by the Kuramoto-Sivashinsky (KS) equations can be con-
trolled without relying on a priori knowledge of the dynamics of the system, but
solely on localized measurements of the system. Effective policies were computed,
capable of driving the system to the vicinity of the unstable, non-trivial solutions
of the KS in a chaotic regime [5]. Here, we further extend these results; we briefly
introduce the basics of nonlinear optimal control theory and RL in §2; a paramet-
ric analysis is proposed in §3 aiming at discussing the robustness of the computed
controllers.

2 Reinforcement learning: introductory elements

In this section, we briefly introduce the main elements for comparing control theory
and the fundamentals of RL.We refer the interested reader to the literature in optimal
control [9], including the fluid mechanics applications [8, 13, 6], and RL for deeper
insights [7, 10, 14].

Bellman’s optimality condition

First of all, we introduce the state-space model
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dv
dt
= F (v(t), u(t), t) , (1a)

x(t) = G (v(t)) , (1b)

describing a dynamical system governed by the nonlinear map F and propagating
the state v ∈ RN . The model is forced by an input vector u ∈ Rm, with m being the
number of inputs. In the second relation, the map G associates the observed state
v to the observable x ∈ Rp , function of time t, recorded as outputs by p sensors.
In the following, we will generally define the observables x and the input vector u
as signals. The control signal u corresponds to the amplitude in time of localized
forcing introduced in the system, typically as actuators.

The optimal control problem applied to the dynamical system in Eq. 1 can be
stated as follows:

To compute the control signal u ∈ Rm using the sensor measurements x ∈ Rp ,
such that an objective function J is minimized.

A general expression of the objective function is given by

J(vt, t, u(τ)
t≤τ≤T

) = h (v(T),T) +
∫ T

t

r (v(τ), u(τ), τ) dτ, (2)

where h provides the terminal condition at time T , the optimization horizon, and r
is the reward associated with the state v and the action u. Note that t can be any
value less than or equal to T . As previously stated, the objective of the controller
is to provide a mapping between the sensor signal x and the control actions u;
this mapping is usually called policy and will be indicated as π such that unknown
optimal signal is obtained as

u?(t) = π? (x(t), t) . (3)

Hereafter, optimal solutions will be indicated with a (?). When the system in Eq. 1
is known, linear (or linearizable) and time-invariant, a classic approach to optimal
control is the linear quadratic regulator (LQR), obtained when the reward r is
quadratic; in that case, it is possible to resolve the associated Riccati equation and
compute the corresponding policy [9]. Here, we keep the formulation as general as
possible and proceed by maximizing the value of the objective function in Eq. 2 on
the right-hand side (RHS) as

J?(v(t), t) = max
π(τ)
t≤τ≤T

[∫ T

t

r (v(τ), u(τ), τ) dτ + h (v(T),T)
]
. (4)

The RHS can be further manipulated by splitting the integral in two contributions
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J?(v(t), t) = max
π(τ)

t≤τ≤t+∆t

[∫ t+∆t

t

r dτ + J?(v(t + ∆t), t + ∆t)
]
, (5)

where the first term defined in the interval [t, t+∆t] and corresponds to an immediate
reward while the remaining terms are now replaced by the optimal value function.
The term J?(v(t + ∆t), t + ∆t) can be developed in Taylor series about v(t) and, in
the limit for ∆t → 0, it leads to the well known Hamilton-Jacobi-Bellman (HJB)

− ÛJ?(v(t), t) = max
π(t)

[
r (v(t), u(t), t) + J?v (v(t), t) F (v(t), u(t), t)

]
, (6)

with J?v being the derivative with respect to the state, and the terminal condition
J?(v(T),T) = h (v(T),T). This functional equation is continuous in time and defined
backward. If the HJB is solved on the whole state-space and its value function is
differentiable, the equation provides a necessary and sufficient condition for the
optimum. More interestingly for what it follows, it can be shown that the discrete
counterpart of the HJB equation is given by the Bellman equation

J?(vt ) = max
u

[
∆t r(vt, ut ) + γJ

?(vt+∆t )
]
, (7)

where γ = exp (−∆t ρ) is the discount factor and ∆t the time step. This equation is
applied using the Markov decision process (MDP) framework, where the probability
of evolving from the present state to the future one under the action u is expressed
by transition matrices. Due to the probabilistic framework, the value function is
reformulated in terms of expectation of the cumulative discounted reward defined by

J π(vt ) = E

[
∞∑
l=0

γlr(vt+l ∆t )

]
. (8)

The Bellman equation in (7) is central in dynamic programming, discrete optimal
control and RL. We can observe an important property: the discounted infinite-
horizon optimal problem is decomposed in a series of local optimal problems; more
precisely, by quoting [2]

"An optimal policy has the property that whatever the initial state and initial
decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision."

This property is the Bellman’s principle of optimality and allows to solve the
optimization problem by breaking it in a sequence of simpler problems.

Reinforcement learning

One of the assumptions in the previous section was the knowledge of the whole
action-state space: when considering nonlinear maps F of large dimensions, the
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computational costs would be prohibitive. As an alternative, we can observe that,
in the Bellman equation, the model does not appear explicitly: it suffices to observe
the state vt and measure the reward r for recovering J π(vt ) from the interaction
of the system with the environment under the policy. If J π(vt ) is a solution of
eq. 7, we get a data-driven approximation of the optimal solution of the nonlinear
control problem. This idea leads to the reinforcement learning (RL) framework; in
the specific case of the deep reinforcement learning (DRL), the policy and the value
function are represented by neural networks (NN).

General classification for RL algorithms

A rather general way to classify the RL algorithms can be made by identifying three
main classes of techniques: i) Actor–only, ii) Critic–only and iii) Actor–Critic. The
word actor is synonym of policy, while critic indicates the value function.

1. Actor–only methods consist of evaluating parametric policies. In this procedure,
each policy is evaluated by recording the system for a long time and computing
the cumulative discounted reward; the optimization is performed by means of
stochastic gradient-descent algorithms for the update of the policy. These algo-
rithms are usually referred to as REINFORCE algorithms. From the mathematical
viewpoint, the actor–only method satisfies the Pontryagin’s maximum principle,
a necessary condition for the optimality, where the system is optimized in the
vicinity of only one trajectory.

2. Critic–only methods are based on the value function approximation; a general
expression of the Bellman equation associated with this class of algorithm is
given by

Qπ(vt, ut ) = r(vt, ut ) + γQπ(vt+∆t, ut+∆t ). (9)

In this way, the state-action value function, or Q-function, is written as solution
of the Bellman equation and measures the long-term reward of a system evolving
along a trajectory emanating from vt under an action ut , and subsequently driven
by a policy π. Q-learning algorithms are aimed at approximating the optimal
action-value function.

3. Actor–critic algorithms combine the two techniques, by providing an approxi-
mation for the policy and guaranteeing that the Q-function is a solution of the
Bellman equation; this condition is satisfied when the analyzed system is Marko-
vian and fully known from the observables.

Deep Deterministic Policy Gradient as an actor-critic algorithm for DRL

In this application, we opted for an actor-critic strategy, the Deep Deterministic
Policy Gradient (DDPG) [10], capable of handling continuous action. First of all, we
define the so-called tuple, composed by the current state xt , the associated reward
rt , and the state xt+1 obtained under the action ut . The tuples are iteratively stacked
in memory, and define the MDP. Note that in the most general case, we do not
consider the full state, but only local measurements such that x = G(v): in this
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Fig. 1 Sketch of the DDPG
algorithm applied for the
control of the KS system.
The system is detected by
means of localized sensors;
the current state of the system
x is recorded from these
measurements. Based on
the action u and the scalar
reward r , the updates of the
Q-function and the policy π
are performed. More details
are provided in the text.

case, the observability of the MDP can be limited, so typically we refer to as partial
observability (PO)-MDP. This aspect is crucial as it can lead to non-Markovian
representations of the system and, as consequence, non-optimal solutions.

The approximations of policy π and value function Q are obtained by NN. In
particular, each element of the i-th layer of the NN approximation can be written as

xij = fj
(
ψxi−1 + b

)
, (10)

where { fj} represents the basis of nonlinear functions (swish or tanh in the present
work) selected for the approximation, with j = 1, . . . h and h the dimension of the
hidden layer. The argument of these functions is given as a linear combination of each
nodes at each layer xij and the coefficients θ = {ψ, b}; the expansion coefficients θ
are the unknowns and are computed using a stochastic, gradient-based optimization.
In particular, by following the sketch in Fig. 1, the update of the value function Q,
the critic part, is obtained by temporal difference T D as

T D = Qπ(xt, ut |θ) − [r(xt, ut ) + γQπ(xt+1, ut+1)|θ] . (11)

The gradient ∇θT D allows to update the coefficients of the NN approximating the
value function. By feeding back into the system the signal u, based on the sensor
measurements x, we are able to close the loop and control the system, as sketched in
Fig. 1. More in detail, the Q-function allows the update of the actor part providing
the policy π

ut = π(xt |ω) +N, (12)

and the action ut . The coefficients ω of the NN approximating π are updated via
the gradient ∇ωQ. A crucial aspect is the exploration: the optimality of the control
is guaranteed by the hypothesis that the state-action space is known. To this end,
the parameters ω of the NN describing the policy are perturbed and noise N is
introduced on the action; both the noise processes vary over time and are damped as
the solution converges. As last note, we stress that one of the main features of DRL
is the continuous learning in real time of the optimal policy.
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Fig. 2 When the domain
is L = 22, the KS system
exhibits 4 equilibria: the null
solution E0 (top-left), and the
non-trivial solutions labelled
with Ei and i = 1, 2, 3
(top-right, bottom-left and
bottom-right, respectively).
All of them are unstable, as
shown by the dynamics of the
system in the spatio-temporal
plots.

3 Control of chaotic regimes: the Kuramoto-Sivashinsky system

In this section, we discuss the control of the one-dimensional Kuramoto–Sivashinsky
(KS) equation using DRL. The KS system exhibits a rather rich dynamics, ranging
from the steady solution to chaotic regimes. The critical parameter is the domain
extent, here indicated with L. In particular, it can be shown that for L < Lc = 2π, the
dynamics is stable and converges towards E0 = 0, while chaotic dynamics emerges
for L > Lc . We consider the solutions obtained for L = 22, corresponding to a
regime characterized by maximum Lyapunov exponent λ1 ≈ 0.043 and Kaplan-
Yorke dimension DKY ≈ 5.2; for this case, the dynamics is low-dimensional and lies
in a space characterized by three non-trivial equilibria and two traveling waves [5].
In Fig. 2, we show the null solution E0 and the three non-trivial solution labelled
Ei , with i = 1, 2, 3; each of these solutions is unstable: the dynamics of the system
becomes chaotic after a short transient. When increasing the domain extension, the
number of positive Lyapunov exponents increases and the dynamics exhibits spatio-
temporal chaos. The dynamics in time of the velocity v ∈ RN is governed by the
equation

∂v
∂t
+ v

∂v
∂x
= −

∂2v
∂x2 −

∂4v
∂x4 + g(t), (13)

here discretized with a resolution of N = 64 grid points on a periodic domain. The
periodic domain allows for a Fourier mode expansion for the numerical resolution.
Time marching was performed by 3rd-order Runge-Kutta scheme; the nonlinear
terms are solved explicitly, while the linear terms are implicit. For all numerical
simulations, a time step of 0.05 was adopted.

The control forcing is introduced by the term g(t) = Bu(t), where B ∈ RN×m is
the spatial distribution of m = 4 localized, Gaussian shaped actuators

B(xa) = (2πσ)−1/2 exp
(
−
(x − xa)2

2σ2

)
, (14)

placed at xa ∈ {0, L/4, L/2, 3L/4} and amplitude modulated in time by the forcing
in time u ∈ Rm, computed by the DDPG and based on p = 8 localized sensor
measurements, staggered with the respect to the actuators location and equidistant.
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It can be shown that the KS equation can be controlled using linear controllers in
combination with localized actuation [1]; however, the scope of this investigation
is to demonstrate the feasibility of a purely model-free approach to the control of
nonlinear flows.

Implementation of DDPG

We choose as objective for our controller to drive the system towards the solution
E2 such that the distance ‖E2 − v‖2 := −r is minimized. As mentioned before, the
DDPG policy is based on NN and its structure is as follows:

1. The actor part, representing the mapping between sensors and actuators, has
m = 4 inputs and p = 8 outputs. Two hidden layers are considered, of respective
dimensions 128 and 64, with activation functions swish and tanh.

2. The critic part, representing the value function, consists of an input of dimension
m+ p = 12, and a scalar output. Two hidden layers are introduced of 256 and 128
nodes, both with swish activation functions.

Adam optimization is applied for the update.

Results

We extend the results of [4] by considering a parametric analysis on the values of the
discount factor γ and maximum amplitude of the outputs. In particular, we consider
three policies with γ = {0.95, 0.97, 0.99} and |u| < 1.0, and two other policies with
γ = 0.99 and maximum output amplitude set as |u| < {0.5, 1.5}. The policy with
|u| < 1.0 and γ = 0.99 is the same as analysed in [4]. Due to the Markovianity of
the system, the controllers are capable of driving the system to the target state E2
regardless of the initial conditions; here, for sake of conciseness and to make the
comparison possible, we choose E1 as initial condition of all the test-cases.

In Fig. 3a-b, we show the trajectory in the phase-space (obtained by projecting
the dynamics on the first three Fourier modes) and the reward, respectively, for
γ = 0.95 (blue-dashed), γ = 0.97 (blue-dotted) and γ = 0.99 (green). The output is
bounded as |u| < 1.0. Surprisingly, despite the three controllers are always capable
to drive the dynamics of the system towards E2, the case with γ = 0.99 is also the
one which exhibits smaller excursions in the phase-space before converging, with
a higher reward. This behaviour resembles what is observed in model predictive
control when longer time-horizon are chosen. In the second set of results, we show
how with γ = 0.99, a different behaviour appears when changing the amplitudes
|u| < {0.5, 1, 1.5}, respectively depicted with a blue-dashed, red-dotted and green
curve in Fig. 3c-d. In this case, as one would expect, in presence of greater control
authority the policies are capable of converging rapidly towards the vicinity of
E2; although the case with |u| < 1.5 is the one showing higher reward, it is also
characterized by a behaviour less clear than the case with |u| < 1.0when considering
the phase-space (Fig. 3c).
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(d)(c)

(b)(a)

Fig. 3 Five policies for the control of the dynamics of the KS are compared for the same objective
function: driving the system to the vicinity of E2. For simplicity of the discussion, the initial
condition is set to be the invariant solution E1. The insets (a-b) show the behaviour of the system
for |u | < 1 and γ = 0.95 (blue-dashed), γ = 0.97 (red-dotted), γ = 0.99 (green); the trajectory
is shown in phase space (a), while the corresponding reward is in (b). In the plots (c-d), we fix
γ = 0.99 and consider three amplitudes: |u | < 0.5 (blue-dashed), |u | < 1.0 (red-dotted), |u | < 1.5
(green); the corresponding trajectories (c) and rewards (d) are shown.

4 Conclusions and perspectives

This proceeding is part of a larger research effort aimed at applying reinforcement
learning strategies to Navier-Stokes systems. Without any a-priori knowledge of the
system, it is possible, by using localized sensors and actuators, to drive the dynamics
of the chaotic KS system towards target states, here represented by unstable solu-
tions of the system. The results are encouraging, although there are still numerous
questions to be addressed. From the application point of view, the control signals
(not-shown here) are highly non-trivial; in this sense, we are currently analysing
the extent to which we are capable of reproducing an action comparable to a lin-
earized, optimal control in the vicinity of the unstable state and the associated energy
budget. A challenging aspect of this work is represented by the extension to Navier-
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Stokes systems of this control strategy. A well-known limitation is represented, for
instance, by the presence of time-delays in convective systems [6, 13]; this problem
"translates" in RL into the so called credit-assignment problem. Also, it is impor-
tant to keep a reasonable and realistic set-up, i.e. by limiting the number of sensors
and actuators; these choices require a trade-off between the engineering needs and
the low-observability, leading to the loss of Markovianity of the system, and low
control-authority.

A future path is represented by the re-interpretation of RL from a control-oriented
viewpoint: tools in standard, model-based control theory, such as model predictive
control and adaptive algorithms [6, 15], rely on the Bellman formalism. The interplay
between tools from optimal control theory and RL could help the development of
reliable tools for the control of fluid systems.
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