An integral model structure and truncation theory for coherent group actions - Archive ouverte HAL
Article Dans Une Revue Israel Journal of Mathematics Année : 2017

An integral model structure and truncation theory for coherent group actions

Matan Prasma
  • Fonction : Auteur

Résumé

In this work we study the homotopy theory of coherent group actions from a global point of view, where we allow both the group and the space acted upon to vary. Using the model of Segal group actions and the model categorical Grothendieck construction we construct a model category encompassing all Segal group actions simultaneously. We then prove a global rectification result in this setting. We proceed to develop a general truncation theory for the model-categorical Grothendieck construction and apply it to the case of Segal group actions. We give a simple characterization of $n$-truncated Segal group actions and show that every Segal group action admits a convergent Postnikov tower.

Dates et versions

hal-02409218 , version 1 (13-12-2019)

Identifiants

Citer

Yonatan Harpaz, Matan Prasma. An integral model structure and truncation theory for coherent group actions. Israel Journal of Mathematics, 2017, 221 (2), pp.511-561. ⟨10.1007/s11856-017-1551-6⟩. ⟨hal-02409218⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

More