Data Driven Detection of Railway Point Machines Failures - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Data Driven Detection of Railway Point Machines Failures

Résumé

In this paper, a novel approach to early detection of railway point machines failures is presented. Easily accessible data from Centralized Traffic Control (CTC) systems, along with meteorological data, are utilized to build a classification system recognizing risk factors for railway point machine failure. We present and discuss a framework that aims at extracting information from the raw railway logs, and discuss the issues that need to be solved to make the framework properly operational. We show that ensemble methods utilizing decision trees are able to provide meaningful classification accuracy for this problem.
Fichier principal
Vignette du fichier
SSCI2019-DoboszewskiFossierMarsala_draft.pdf (569.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02407540 , version 1 (12-12-2019)

Identifiants

  • HAL Id : hal-02407540 , version 1

Citer

Iwo Doboszewski, Simon Fossier, Christophe Marsala. Data Driven Detection of Railway Point Machines Failures. IEEE Symposium Series on Computational Intelligence (SSCI) - Computational Intelligence in Vehicles and Transportation Systems (CIVTS), Dec 2019, Xiamen, China. pp.1233-1240. ⟨hal-02407540⟩
95 Consultations
524 Téléchargements

Partager

More