
HAL Id: hal-02407540
https://hal.science/hal-02407540v1

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Driven Detection of Railway Point Machines
Failures

Iwo Doboszewski, Simon Fossier, Christophe Marsala

To cite this version:
Iwo Doboszewski, Simon Fossier, Christophe Marsala. Data Driven Detection of Railway Point Ma-
chines Failures. IEEE Symposium Series on Computational Intelligence (SSCI) - Computational In-
telligence in Vehicles and Transportation Systems (CIVTS), Dec 2019, Xiamen, China. pp.1233-1240.
�hal-02407540�

https://hal.science/hal-02407540v1
https://hal.archives-ouvertes.fr


Data Driven Detection of
Railway Point Machines Failures

Iwo Doboszewski
AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow, Poland,

Sorbonne Université, CNRS, LIP6,
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Abstract—In this paper, a novel approach to early detection of
railway point machines failures is presented. Easily accessible
data from Centralized Traffic Control (CTC) systems, along
with meteorological data, are utilized to build a classification
system recognizing risk factors for railway point machine failure.
We present and discuss a framework that aims at extracting
information from the raw railway logs, and discuss the issues that
need to be solved to make the framework properly operational.
We show that ensemble methods utilizing decision trees are able
to provide meaningful classification accuracy for this problem.
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I. INTRODUCTION

Point machines are responsible for correct setting of rails
on turnouts. Correctness of their operations is a necessity
for proper operations and safety of any railway network. A
malfunctioning point machine can result in either technical
breaks or switch to manual operation introducing delays and
increases risks or directly cause train crash.

In this paper, the term commonly recorded data refers to
data recorded by the Centralized Traffic Control (CTC) system
(communication, operations and failures of the point ma-
chines) and publicly available meteorological data. Recording
of such information in Poland and most of the countries is
mandatory, according to the safety regulations, so obtaining
this data does not require the introduction of specialized
measurement systems into the operating point machines and
is basically investment-free.

Our research is a first step for failure prediction and aims
at establishing whether this commonly recorded data can be
used to highlight what are the conditions under which failures
happen. The goal is to discover whether there are patterns of
failures that can be explained by this data, or if failures are
occurring either randomly or due to other external conditions,
based on records coming from the railway supervision system
and current weather conditions. This allows for recognition of
risk factors for failures, which is a valuable result from the
practical point of view, as it allows to create a more informed
maintenance policy.

Our approach can be decomposed as follows. First, events
are represented in terms of numerical features that can be
used for the classification. Then the classification system

for the operations of the point machines is trained. The
system attempts to classify the events as correct operations
or failures based on the features representation. It is trained
and validated in a supervised setting, as the recorded events
are already labeled as correct or failures by the CTC system.
Several classification methods are applied and the results are
compared.

The novelty of this approach is that the analysis is based on
a huge volume of real-world data recorded over long period of
time on multiple stations. This gives comprehensive overview
of most common failures and operations characteristics that
point machines are experiencing. To our best knowledge, this
approach to the analysis of the point machines failures has not
been tried before.

The paper is organized as follows. In Section II, we set
the general problem of point machine reliability, along with a
state of the art of existing solutions. In Section III, the data
that is used for the calculations is described. In Section IV,
our planned approach for the data analysis is presented. Then,
in Section V, the setting for calculations is presented and the
results are summarized. Finally, in Section VI, conclusions are
presented and future work is discussed.

II. POINT MACHINES – PRINCIPLES, STATE OF THE ART

Point machines are devices responsible for turnout setting
and are managed remotely by CTC system. They are composed
of an engine and a movement transmission system with
stretcher bar setting the connecting rails. Connecting rails can
be set to the two positions allowing the train to either turn or
proceed forward.

Once a setting to a specific train position is ordered by a
CTC system, a point machine is either locked in the position
it is already in, or the engine moves the stretcher bar to
another position. The movement needs to be executed within a
predefined time, otherwise the operation is considered to be a
failure. This time is usually set around 10 seconds, depending
on the specific network requirements. Such a movement is
refer further as an operation. In the case of the data discussed
further, this time is 11 seconds.



Fig. 1. Fishbone diagram of faults for point machines from [1] with marked connection to specific conditions.

A. Failure modes

While the point machine is not a very complex device
in terms of number of components, it has multiple failure
modes. Failure modes and mechanisms standing behind them
are presented in Figure 1 from [1].

The failures can be divided among general failure causes.
The ability to recognize risk factors is a valuable result
from the practical point of view, as it allows to create more
informed maintenance policy. In our case, the system that
produces the data does not possess diagnostic features and
does not distinguish the failures resulting from different failure
modes and only acknowledges failures once the confirmation
of successful movement does not arrive in specified time.

The data limitations do not allow us to distinguish precisely
between different failure modes but it enables us to detect
some general conditions that can be connected with groups of
specific failure modes. The reason for the specific conditions
choice is their presence in the data. These conditions are:

• General wear out due to high number of performed
operations.

• Temporary usage (possible lack of grease).
• Weather conditions – cold and frost change mechanical

properties of moving systems and can slow down or even
block point machine movement.

• Weather conditions – high humidity can negatively impact
electronics in point machine and even lead to a failure in
extreme case.

• Irregularities in the time of the movement – varying

time of point machine movement between consecutive
operations can be a signal of mechanical issues and wear
out that leads to a failure.

Some failure modes are connected to long-term humidity,
but we do not a have a way to assess it, as the measured
conditions for most train stations are similar. There are some
statistical yearly differences in humidity, but they seem to be
secondary, as the climate is the same on all analyzed stations
(there is no big difference such as between swamp and desert).

There are failures that do not correspond to the identified
conditions. For the sake of simplicity, we refer to them
as random as they are indistinguishable from truly random
failures given the knowledge provided by the data we use.

B. State of the art

Point machine condition monitoring has recently been a
prominent field of study. Main approaches for providing early
faults detection of a point machine seems to be based on
the analysis of their power consumption [1] [2] [3]. In [4],
authors estimate the remaining useful life based on electric
current measurements, in [5] vision-based measurements of a
gap between point machine blade and the rail is used, and in
[6] an analysis of the sounds from the point machine is done.

The main differences between existing approaches and ours
lays in the fact that, in our case, no additional, specialized
measurement systems need to be provided and, moreover,
all the approach works with only data that is already being
recorded.



III. DATA DESCRIPTION AND FEATURE EXTRACTION

As explained earlier, our approach is based on two sources
of data: the railway data and the weather data taken from [7].

A. Railway data

The data used for this research are raw logs from CTC
system obtained from Thales Polska, recorded during about
one year at 6 train stations in Poland. The records are
composed of the communication (movement orders, operation
confirmations etc.) between CTC system and traffic control
devices (point machines, axle counters, signaling lights). The
data comes from 373 point machines with various frequencies
of operations, from a few to dozens per day. The devices in
vast majority are produced by Thales Group. While the exact
effects of wearing-out and useful life can be different between
different types of point machines, we expect, that the most
general causes of their failures are failing under similar scheme
and can be extracted from this data set.

The events of interest are movement orders, movement
confirmations and failures reports of point machines. All
events are time-stamped. The duration of a point movement
can be estimated as the difference of time stamps between
reported start and end of the movement.

B. Categories of features

The two combined datasets are used to derive the features
that represent conditions during operation. We distinguish
three categories for such conditions: operations record fea-
tures, time of operation features, and weather features.

1) Operations record features: These features correspond
to general usage of the point machines, such as operations
frequency and presence of failures. They aim to assess basic
level of degradation from wearing out.

2) Time of movement features: These features are meant to
represent changes in time of the movement of a point machine,
as we expect that slowing down and irregular variations can
be a signal of approaching failure. A number of statistics is
calculated over specific, constant number of preceding opera-
tions. These preceding operations are referred to as preceding
time window.

For the first aspect, general statistics on recent operations
are used. For the second, we utilize a statistical normal-
ity test and counting of outliers as a way of measuring
the movement irregularity. By outlier number, we mean the
number of movement duration that are outside of interval
[mean−3·std;mean+3·std] with mean and standard deviation
calculated for the whole window, excluding operation with
longest and slowest time of movement.

3) Weather conditions features: There are two recorded
weather parameters that can have an impact on failures:

temperature (due to its impact on material properties, it is
expected that it has a direct consequence on point machine
operation characteristics, such as a higher density of grease
slowing down the movement of engine)

and humidity (a higher level is a risk factor for failure if the
electronics is not properly sealed).

Window
length

Correct oper-
ations

Failures Number of
devices

10 3 892 007 1842 432
20 3 887 229 1814 413
30 3 881 849 1791 396
45 3 873 425 1764 384
60 3 864 713 1737 373
100 3 839 490 1672 354

TABLE I
NUMBER OF VALID OPERATIONS FOR DIFFERENT WINDOW LENGTHS

C. Features extraction

To summarize, the following features have been extracted
from the data:

• Operations record features: 1) Total number of operations,
2) Number of operations performed recently (within last
72 hours), 3) Time since the last failure, 4) Numbers of
preceding failures;

• Weather conditions features: 5) Humidity, 6) Tempera-
ture;

• Time of movement features (calculated for specified num-
ber of preceding operations): 7) Mean, 8) Standard devi-
ation, 9) Maximum, 10) Minimum, 11) Anomaly score
(statistic of Shapiro-Wilk normality test), 12) Number of
outliers.

Several time window sizes have been experimented with
to assess the impact of its size on the performance of the
classifier. Window size varies from 10 to 100 operations. These
correspond, on average, to a few days of operations.

Let us note that for every device and set window length
w, the first 2 · (w − 1) recorded correct operations are not
preceded by w operations and cannot have the time-based
features calculated in the same way as other events. Because
of that, they are discarded from further analysis. The same
goes for failures that happen at the beginning of the record.

This results in different number of events for different sizes
of the window; they are presented in the table I.

One issue in our approach is that operations recorded
right before and after a failure belong, at the same time, to
time window related to this failure and subsequent/preceding
correct operations. This is problematic, as we are expecting
that the failure window contains information distinguishing
it from time windows that do not end in failure. We do not
address this issue in this study.

IV. CLASSIFICATION OF POINT MACHINE EVENTS

A. Challenges to build the classification model

There are a few issues that need to be solved during the
building of a classification system from recorded operations:
events representation, choice of the building method, dataset
balance, results validation and interpretation.

The first issue is to find a representation of events in terms
of numerical features that have practical meaning. The features
are derived in a straightforward manner based on heuristics for
the factors that we expect to play a role in failures. Some of
the features are based on the preceding operations. For that



a choice of the length of preceding period needs to be made.
This is described in part III-C. The features themselves are
presented in part III-C.

The second issue is to choose a method for the classification
of the events themselves. In our study, we focus on the use of
a machine learning algorithms. There exists many algorithms
that can be used for such a task and a selection should be
made. This issue is discussed in V-C.

The third issue is the lack of balance in the data set that
can results in poor classification performance for the classifier.
In extreme cases trained model can classify all events as the
more prevalent class (i.e. correct operations). There are two
basic ways of dealing with this problem [8]: to re-sample the
dataset in order to make it more balanced, or to adapt the
machine learning algorithm so that it is more sensitive to less
represented class. This process is studied in V-A2.

The fourth issue is concerned with the validation of the
results to figure out which model is the best and whether its
performance is satisfying. For that, we use of the F-metric as
a performance metric. This issue is discussed in V-B2.

B. Overview of the global workflow

The conceptual steps of the milestones of our approach,
from raw data to the final results, go as follows:

1) Extraction of events (points movements and failures)
from raw logs

2) Preprocessing of events: removal of outages, repeating
alarms and other recorded events that are artifacts of the
system;

3) Definition of features (the presented analysis starts here);
4) Calculation of features (specific technical details - length

of time windows etc.);
5) Division into training and test set;
6) Choice of machine learning methods, parametrization;
7) Choice of assessment metrics and results evaluation.

In this milestone, steps of practical computations can be
highlighted:

• Parsing of messages
• Events extraction
• Events validation
• Calculations of features
• Cross validation: Training and test dataset division;

Model learning and validation; Metrics calculation; Sum-
marizing results

The first three steps are conducted according to the method-
ology described in [9].

V. EXPERIMENT

In this section subsequent steps of calculations are de-
scribed. After detailing data preparation, basic validation and
chosen machine learning methods are presented. Then results
for decision trees, random forests and bagging are summa-
rized.

A. Data preparation

1) Train and test set construction: The events from all
6 train stations are merged. A 10-fold cross validation is
performed with randomized events to evaluate the accuracy
of the model.

The first problem that needs to be solved is the lack of
balance of the classes in the data set, as there are around 1800
successful movements per single failure on average (there are
1805 failures and around 3,200,000 correct operations). Lack
of balance in the data is a well researched issue and several
solutions exist [8]:

• Data-level approaches - These include randomized or
informative (rule-based) resampling of the data set and
synthesis of new data.

• Algorithm adaptation - Introduction sensitivity toward
less frequent class to increase its impact on the learning
process.

• Cost-sensitive learning - Augmentation of the costs to
decrease the impact of the unbalance of the data set.

• Boosting - Combining multiple learning instances in
order to improve their ability to generalize.

2) Dataset resampling: In our approach, we propose to
balance the data set by resampling it: successful operations
are undersampled. Additionally, failures are oversampled for
ensemble methods. Oversamplling is done exclusively for
ensemble methods in order to avoid overfitting.

Let us stress that there are no general rules on what the
ratio of classes should be; this is strongly specific to the data
and the method utilized. Therefore, the right balance between
classes needs to be solved for each of learning method.
Basically, our aim is to include as much correct operations as
possible without decreasing the ability to generalize, especially
regarding detection of failures. As a consequence, for each
algorithm, several values have been checked in the following
way.

Number of failures per operations is increased (5, 10,
50, 100, etc.) until the accuracy on the test set starts to
decrease significantly. For comparison, whole dataset without
resampling is used as well.

B. Validation

1) Baseline: Our baseline to compare with is random
classification, that is, classification according to binomial
distribution with probabilities of classifying the event as
failure or correct operation being, respectively, pf =

nf

N and
pcorr = ncorr

N , where nf (resp. ncorr) is the number of
recorded failures (resp. correct operations) and N = nf+ncorr
is the total number of recorded events. Indeed, classification
accuracy for a learning model should be higher than the certain
percentile (denoted further by α) of the mean of N random
variables defined above. It means, that the accuracy a should
fulfill a > qα(XN ), where qα is a quantile of order α with
XN being a sum of N random variables equal to 1 or 0 for,
respectively, properly or improperly classified operation. Using
the central limit theorem [10], this is equivalent to



a > pf + qα

√
pf (1− pf )

N
, (1)

with qα being the quantile of order α of standardized normal
distribution.

2) Metrics: For the selection of the most efficient model a
metric for model performance assessment is introduced. This
allows for quantification of their performance and standard-
ization of comparison of different models. There are various
metrics that can be used for that, but not all of them fit the
specificity of the studied situation.

In [11], various metrics for model assessment are discussed.
Some of these metrics are presented hereafter, each defined
from the confusion matrix as in Table II where failures are
denoted ’positive cases’ and correct operations are denoted
’negative cases’.

Classified as failures Classified as correct
Failures True Positive (TP ) False Negative (FN )
Correct operations False Positive (FP ) True Negative (TN )

TABLE II
CONFUSION MATRIX.

The Accuracy metric is valued as:

Acc =
TP + TN

TP + TN + FP + FN
. (2)

This metric is not suitable for imbalanced datasets, as the
prevailing correct operations might overshadow the very low
fraction of correctly classified failures.

The two following metrics, and their aggregation, are often
more suitable in presence of unbalanced datasets.

The Precision corresponds to the correctness of the predic-
tion of the classifier when it predicts a failure. It is valued
as:

Pre =
TP

TP + FP
(3)

The Recall corresponds to the ratio of failures that are
correctly predicted among all existing failures in the dataset.
It is valued as:

Rec =
TP

TP + FN
(4)

These two measures can be aggregated to build the F-
measure. This metric is defined as a harmonic mean of
precision and recall:

F =
2

1
Pre +

1
Rec

=
2 · Pre ·Rec
Pre+Rec

(5)

Let us note that, as a harmonic mean, F-measure is more
sensitive to the lower value than the arithmetic mean (means
inequality). In [11] it is encouraged to use the F-measure
in case of highly imbalanced data with emphasis on correct
classification of less frequent classes.

For actual model selection, the metrics are applied to the
averaged confusion matrix coming from the 10-fold cross-
validation.

Metric Depth 12 Depth 18 No max depth
Precision 0.48 0.0041 0.082
Recall 0.64 0.0065 0.80
F-measure 0.0082 0.013 0.081

TABLE III
BEST RESULTS OBTAINED WITH SINGLE DECISION TREE FOR DIFFERENT

TREE DEPTH

C. Machine learning models

The machine learning models used in our experiment are
decision-tree based: decision trees, random forests, and bag-
ging of decision trees [12].

The main advantages of these two models lies in the fact
that they are not distance-based (which is desired, as it reduces
the need to introduce arbitrary distance metric in the process).
Furthermore, the size of the dataset has a modest number of
dimensions, making some tools such as neural networks more
problematic to use due to the high risk of overfitting.

All calculations has been done using Python libraries [13],
[14] and [15].

1) Decision trees: There are three important aspects for the
configuration of a tree. The first is the way in which the splits
of the nodes on the tree are calculated. At this point, we do
not interfere with this process. The second is linked with the
complexity of a tree - the number of features and samples that
are taken into account when performing a split. The third is
the size of the tree - it can be controlled by setting maximum
number of nodes or its depth.

At this point, we only work with the third aspect. For the
depth of the tree, we go from small to big to check the impact
of size of the tree on the accuracy of the classifier.

Additional feature of the decision trees is modification of
the cost function by inverse of class frequencies which reduces
impact of lack of dataset balance. This is used further in
V-D0a.

2) Ensemble methods: The next step is to use ensemble
methods, i.e. forests of decision trees, that collectively can
provide better classification quality and insight into the clas-
sification process.

Two ensemble methods are tried here: random forests and
bagging. At this point, for both methods, multiple algorithm
parameter configurations are used and fitted to the data with
with different parameters each time. The validation procedure
for those ensemble methods is the same as for random forests
- cross validation and metrics described in V-B2.

From the previous analysis of the single decision tree
performance we know that the depth of the tree providing
the best performance is around 6. Therefore, for the forest we
use lower values.

The decision trees used as basis for the forest are configured
in the way described in V-C1.

D. Classification with decision trees

To summarize, we use the following settings for the algo-
rithm:



1) Dataset balance: None, algorithm weights modification,
undersampling, both algorithm modification and under-
sampling.

2) Window size modification; we take specific sizes, from
short to long: 10, 30, 60 and 100.

3) Finally, there are algorithms specific parameters. For
tree, those are depths that are set as 1, 6, 12, 24.

In general, it gives 44 = 256 parameters sets independent
calculations runs.

At first, the dataset balance issue is solved. We take a
single decision tree, train it on the data merged from different
sources, with three different window sizes and test all balance
configurations. Different max depths are checked and the
comparison is made.

To decrease the number of calculations, we decide to
cut them short - that is, start from the lower value of the
parameters and stop them once there is no visible change to
the quality of results (or the quality decreases). Additionally,
dataset balance and algorithm parameters are chosen only for
all devices merged together.

We do as follows. At first, the choice of dataset balance
method is done. Then window size is chosen. Finally, impact
of tree size on the classification is looked at.

a) Training, dataset division - results: For the setting
with no dataset balancing, the best obtained precision on test
set was around 6%. For most of other parameters values, no
failure has been correctly classified. Clearly, a form of dataset
balance needs to be introduced.

For the balance by undersampling, there are a few possible
ratios of operations-to-failure. We pick randomly ncorr correct
operations so that the ratio ncorr/nfail = n for specific
n equals, consecutively, 5, 10, 50, 100 and 500. nfail is a
number of failures in the dataset. In this case, the classification
accuracy is much higher, allowing for the precision at level of
around 60%.

For all settings taken into consideration (depth of the tree
and window size), augmenting the weights gave the best results
in terms of precision of detection of failures and correct opera-
tions. Precision for failures has been on a very close level (for
the setting with both undersampling and weights augmenting),
but the precision in classification of correct operation has been
better for settings with only weights augmentation, presumably
due to more sparse training set not covering misclassified
cases.

Although, interestingly, while the precision has been lower
for undersampling methods, the method wasn’t overtraining as
much for the case of greater depths (equal to 12 and 18), but
in this case the precision was still below the level obtained by
weights augmenting. On the other hand, it this effect could be
simply due to the smaller training set.

b) Window size: There is a slight impact of window size
in terms of precision of failures classification.

Better values are achieved for rather short windows, al-
though as the parameters calculated for windows are not
decisive for short trees, it could be due to the lower amount

Metric Resampling,
training set

Resampling,
testing set

No
resampling,
training

No
resampling,
testing

Precision 0.96 0.0024 0.0026 0.0026
Recall 0.8 0.8 0.79 0.79
F-measure 0.88 0.0049 0.0052 0.0052

TABLE IV
EXAMPLE OF CLASSIFICATION RESULTS FOR BAGGING CLASSIFIER WITH

MAXIMUM DEPTH 2, 10 ESTIMATORS AND 0.1 FRACTION OF SAMPLES.

of data points (longer window means rejection of operations
from the start).

c) Depth of the tree: From the experiments, we can infer
that a tree depth around 6 gives the best results. In most of the
settings, the precision of failures identification is around 75-
80% but decreases once the tree gets deeper (to max depth of
12 or 18). It presumably results from overtraining. The exact
value at this point is not very important, as it might change
with changes in the method in the future.

d) Decisive features: We are able to look at the content
of the trees, that is, the features that are present in the splits.

The features included in shortest trees (depth equal to 3) are
the one derived from operations and failures record - time since
last failure, temporal operations number, preceding failures
number. Additionally, statistics of time movement—mean and
minimum—also appear in them.

For trees of depth 4, additional statistics appear—standard
deviation and normality of time of the movement. Also,
temperature is included.

For trees of depth 6 and more, all features are used. Let us
note that such a tree contains 31 splits, thus some features are
reused multiple times.

E. Classification by Random Forest

The following parameters are set tested, with calculations
performed on most of the combinations (some configurations
have been skipped for undersampling once it was recognized
that all events are classified as correct operations regardless):

• Dataset balance: None, undersampling, weights, weights
and undersampling

• Window length: 10, 20, 30, 45, 60, 100
• Trees depth: 2,3,4,5
• Number of trees: 10, 25, 50, 100
For oversampling, there are three ratios (number of failures:

number of correct operations): 1:10, 1:100 and 1:500.
a) Dataset balance:

1) No balancing – for this method the classification results
are poor - the algorithm classifies all the events as correct
operations, regardless of its detailed configuration.

2) Undersampling – retains much better precision, although
it can be due to much smaller testing dataset with
correct operations. With no additional weights balance,
there is very little success in classification of failures,
as everything tends to be classified solely as a correct
operations.

3) Weights balancing – this specific balancing method pro-
vides the best results regardless of dataset resampling.



Depth Precision Recall F-measure
Training 2 0.0030 0.80 0.0060
Testing 2 0.0030 0.79 0.0061
Training 3 0.0035 0.78 0.0070
Training 3 0.0035 0.78 0.0070
Training 4 0.0043 0.77 0.0086
Testing 4 0.0042 0.76 0.0085

TABLE V
BEST RESULTS FOR EACH VALUE OF A TREE DEPTH

b) Window length: The differences of results between
different window lengths turns out to be very little.

c) Trees configuration: We decided to set the maximum
depth of the tree to be between 2 and 5. Generally, deeper
trees allow for better results in terms of precision (and,
subsequently, F-measure), at the slight expense of recall; the
values in most cases change from, for precision, from 0.0025
to 0.0035, for recall from 0.75 to 0.81, with F-measure ranging
between 0.0049 and 0.0069.

d) Forest sizes: Forest size has visible impact on the
classification accuracy. While the smallest forest has clearly
inferior overall performance for shallow trees, the differences
get much smaller once the trees get deeper, although, bigger
forests tend to provide slightly better results (usually, around
1% better for similar configuration).

Results summary: Overall, there is not much difference in
results for different configurations.

Interestingly, in most cases the metrics calculated for clas-
sification results on training and testing dataset are the same,
and overall, they do not differ strongly, at most up to few
percents. The standard deviation calculated for the confusion
matrices coming from the different training and testing dataset
decompositions are

Judging by the standard deviation of confusion matrices
coming from different training and testing dataset decomposi-
tions for the same parametrization, in most cases there seems
to be the same level of differences between slightly different
parameterizations and different training and testing datasets.

F. Bagging

As it was shown before, the window length parameter does
not have a major impact on the final results, so we focused
only on three values that give the best results.

In bagging, a set of decision trees is used with each of
the classifier learning on the randomly chosen subset of data.
Sampling has been done with replacement. Additionally, few
failures are oversampled. Due to the poor results for lack
of balance, calculations without balancing weights has been
skipped for the dataset not balanced by resampling.

The parameters are set as follows, with calculations per-
formed on all combinations:

• Dataset balance: oversampling, weights, weights + over-
sampling

• Window length: 20, 30, 60
• Trees depth: 2, 3, 4
• Failures fraction: None, 0.1, 1.0, 5
• Trees number: 10, 25, 50, 80

Forest size Precision Recall F-measure
10 0.0039 0.75 0.0077
25 0.0041 0.74 0.0082
50 0.0042 0.75 0.0083
80 0.0043 0.76 0.0085

TABLE VI
BEST RESULTS ON TESTING DATASET FOR EACH VALUE OF FOREST SIZE

For oversampling, there are three ratios of number of
failures to number of correct operations: 1:10, 1:1 and 5:1.
These had been tried for the window size of 30, as this is the
size that gives the best results.

a) Window size: There is no big impact of the window
size on the results. For different values of window size, the
results are very close (that is, the difference of metrics is less
than 2-4%) and there is no single value better than the others.

b) Dataset balance: Apart from weights modification,
typical for decision trees, dataset balancing by resampling
has been tested. Given the previous negative experience with
undersampling of the correct operations set, this time over-
sampling of failures has been tried. That is, once the dataset
without any changes has been divided into training and testing
datasets, the failures in the training dataset had been oversam-
pled to a specified failures fraction. Despite oversampling, it
was decided to keep the balancing weight in the calculations
as well.

Oversampling for training purpose did not provide much
of an advantage, and the performance metrics for the testing
dataset results are very close to those without the procedure
of resampling.

Let us stress that the difference between values for training
and testing is strongly impacted by the dataset characteris-
tics, as multiple instances for training with oversampling are
repeated, which is not reflected in the testing set.

Overall, oversampling for failures does not provide models
with the same quality in terms of F-measure as the model
without it. It could be due to the overlearning of specific
events, that are repeated dozens or hundreds of time to make
up for worse proportion in the original data.

In further work we focus only on the setting with weights.
c) Trees configuration: For the trees themselves, the

most important parameter is their maximum depth. It has a
strong impact on the quality of the classification.

On the other hand, in the setting where the failures-to-
correct operations had been 5, for deeper forests the algorithm
started to classify the events very poorly—classifying the
majority of correct operations as failures, thus degrading the
results. Apart from it, the results for testing dataset have been
almost identical, at least in terms of the introduced metrics,
despite different values of metrics in training dataset in some
instances.

Results presented in Table V show that the depth of the
tree has a profound impact on the accuracy of the classifier.
As we can see, the metrics for both test and training are almost
identical.



Maximum samples Precision Recall F-measure
0.1 0.0043 0.76 0.0085

0.25 0.0036 0.79 0.0072
0.5 0.0034 0.80 0.0067

TABLE VII
BEST RESULTS FOR EACH VALUE OF SAMPLES FRACTIONS

d) Forest size: Multiple forest sizes had been tried. In
Table VI, it can be shown that the deeper forests provide
better classification performance, but within limits - we can
see the slowdown of improvements with increase from 25 to
80 estimators in a forest.

e) Training samples fraction: In Table VII, it can be seen
that the classification quality decreases as the samples size
increases, which might be somehow surprising. We do not
have an explanation for this.

Result summary

The standard deviation for all elements of confusion matrix
coming from the 10-fold cross validation has been computed.
They are lower at least one degree of magnitude than the mean
value. It is rather reasonable and expected, and they are not
included in the analysis here.

In Table VIII, it can be seen that while the single, uncon-
strained decision tree reaches the highest F-measure, it is in
part due to its overtraining and overclassification of the events
as correct. We prefer models that provide correct classification
of not only one class.

Overall, we prefer to call bagging methods as most effective.
It seems, that part of its advantage lies in the rather low
fraction of failures taken into training of each tree, as seen
in Table VII.

VI. CONCLUSION

In this paper, a new approach for detection of point ma-
chines failures using easily obtainable data (coming from CTC
system and public weather stations) is presented.

A complete framework for information extraction and clas-
sification is shown. We presented and discussed a way to pro-
vide a compact numerical representation of the most important
aspects of recorded events, along with a choice of machine
learning algorithms.

We show that machine learning methods, specifically de-
cision forests, have an ability, to a degree, to distinguish the
conditions under which point machines operate properly or
not.

The research is in an initial stage and there are still issues
that need to be resolved before the method could be used for
actual failures prediction and diagnosis. The main concern is
the decrease of operations falsely classified as failures, which
is too high. Possibly, this could be done by alternating the
setting in which calculations are done. Also, some technical
details (specifically features construction) could be altered as
well. Another interesting result would be the extraction of the
conditions that increase the risk of failure.

Metric Single decision tree Random forest Bagging
Precision 0.0065 0.0035 0.0043
Recall 0.48 0.78 0.76
F-measure 0.013 0.0071 0.0085

TABLE VIII
BEST PERFORMING MODELS AMONG ALL TESTED CONFIGURATIONS OF

DECISION TREE, RANDOM FOREST AND BAGGING
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przykładzie napedu zwrotnicowego,” Ph.D. dissertation, AGH University
of Science and Technology, 2009.

[4] J. Sa, Y. Choi, Y. Chung, H.-Y. Kim, D. Park, and S. Yoon, “Replacement
condition detection of railway point machines using an electric current
sensor,” Sensors, vol. 17, no. 2, p. 263, 2017.

[5] T. Xu, G. Wang, H. Wang, T. Yuan, and Z. Zhong, “Gap measurement
of point machine using adaptive wavelet threshold and mathematical
morphology,” Sensors, vol. 16, no. 12, p. 2006, 2016.

[6] J. Lee, H. Choi, D. Park, Y. Chung, H.-Y. Kim, and S. Yoon, “Fault
detection and diagnosis of railway point machines by sound analysis,”
Sensors, vol. 16, no. 4, 2016.

[7] I. of Meteorology and W. M. N. R. Institute, Warsaw, Poland. [Online].
Available: https://dane.imgw.pl/datastore

[8] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced
data: A review,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 23, no. 04, pp. 687–719, 2009.

[9] I. Doboszewski, S. Fossier, and C. Marsala, “Extraction de connaissances
sur les defaillances de compteurs d’essieux,” Revue des Nouvelles Tech-
nologies de l’Information, vol. Extraction et Gestion des Connaissances,
RNTI-E-34, pp. 311–316, 2018.

[10] J. Jakubowski and R. Sztencel, Wstep do teorii prawdopodobieństwa.
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