Model-based clustering with missing not at random data. Missing mechanism - Archive ouverte HAL
Poster De Conférence Année : 2019

Model-based clustering with missing not at random data. Missing mechanism

Résumé

Since the 90s, model-based clustering is largely used to classify data. Nowadays, with the increase of available data, missing values are more frequent. We defend the need to embed the missingness mechanism directly within the clustering model-ing step. There exist three types of missing data: missing completely at random (MCAR), missing at random (MAR) and missing not at random (MNAR). In all situations , logistic regression is proposed as a natural and exible candidate model. In this unied context, standard model selection criteria can be used to select between such dierent missing data mechanisms, simultaneously with the number of clusters. Practical interest of our proposal is illustrated on data derived from medical studies suffering from many missing data.
Fichier principal
Vignette du fichier
posterPortrait.pdf (367.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02398987 , version 1 (08-12-2019)

Identifiants

  • HAL Id : hal-02398987 , version 1

Citer

Fabien Laporte, Christophe Biernacki, Gilles Celeux, Julie Josse. Model-based clustering with missing not at random data. Missing mechanism. Working Group on Model-Based Clustering Summer Session, Jul 2019, Vienne, Austria. ⟨hal-02398987⟩
173 Consultations
43 Téléchargements

Partager

More