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Summary "

Since the 90s, model-based clustering is Model-based clustering:

largely used to classity data. Nowadays, x

with the increase of available data, miss- P(yi;0) = Zmﬁm(yi)
ing values are more frequent. We defend =1
the need to embed the missingness mech-
anism directly within the clustering model- * @ are gaussian or multinomial distributions, with parameters u; and Xz or p:.
ing step. There exist three types of miss-

ing data: missing completely at random * 0= (m,. .., Tk, (U1, X1)/p1s - (0K, X)) /PK)

(MCAR), missing at random (MAR) and

missing not at random (MNAR). In all situ- Missing mechanism models:

ations, logistic r§gression .is proposed as a logit(P(cg Vi 22 0)) = o, ¥ = ag (MCAR)

natural and flexible candidate model. In . y
this unified context, standard model selec- logit(P(c; |yi, 2z = 1;9)) = ap + Bz;, ¥ = (o, B1, ..., Bx) (MNARz)

tion criteria can be used to select between logit(P(Cg Vi, 2i30)) = ap + ozjyg + Bz, ¥ = (g, ...,aq,01,...,8r) (MNARyz)
such different missing data mechanisms, si-
multaneously with the number of clusters.
Practical interest of our proposal is illus-
trated on data derived from medical studies
suffering from many missing data.
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where x m, = P(zF = 1),

1

Inference: EM-like algorithm |

Separability of the update:

- Qy.c.z(0,0]0, M) = Qy (010D, v®) + Qe (v]0M), ™))

—> Maximize on 6 and 1) separatly.

Dataset Example

18 7 blue
20 03 green
7 56 brown
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E step simple for MCAR and MNARz:

Simpler way: SEM algorithm

0
01 = (1, 3, 4)

Link with Classical Methods

All available cases:

Conditional independence of the variables knowing the cluster <= AAC to update 6 in each
o o ou step
Yo =1y, ¥}
y" = {ylinla . »YZM} Concatenation:

MBC on Y with a MNARz mechanism <—=- MBC on (Y |C) with a MAR mechanism

Application "

ICL Comparison

Missing mechanism (1) 8

Missing Completely at random (MCAR):

P(ci|Y) = P(c;) Dataset:

Number of individuals: n = 5 146
Number of feature: d = 7
Percentage of missing data: 6.4%

-96200

Missing at random (MAR):
P(c;|Y) = P(¢;|Y?)

-96600

ICL

Missing not at random (MNAR):

Not MCAR nor MAR Results:

MCAR and MNARz are equivalent until K = 3
MNARz and MNARyz clearly indicate presence of an ad-
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Conclusion B

The method is implemented in the R Package "Relatedness", that performs inference on phased /unphased genotypic data, and accounts for a
potential population structure. Core functions are developed in C++4 and parallelized to speed-up inference on large panels. More information
is available in F. Laporte, C. Charcosset and T. Mary-Huard, Estimation of the relatedness coefficients from biallelic markers, application in
plant mating designs, Biometrics in press.
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