Modèles de classification non supervisée avec données manquantes non au hasard
Résumé
Usually missing data are assumed to be missing at random. In this talk, we propose logistic models assuming that missing data are not missing at random, in the model-based clustering setting, and that the occurrence of missing data is related to the clustering. Different models are proposed and estimated through the maximum likelihood methodology. Their characteristics are analyzed through numerical experiments on Hospital data.
La difficulté de prise en compte des données manquantes est souvent con-tournée en supposant que leur occurrence est due au hasard. Dans cette communication, nous envisageons que l'absence de certaines données n'est pas due au hasard dans le contexte de la classification non supervisée et nous proposons des modèles logistiques pour traduire le fait que cette occurrence peutêtre associéeà la classification cherchée. Nous privilégions différents modèles que nous estimons par le maximum de vraisemblance et nous analysons leurs caractéristiques au travers de leur application sur des données hospitalières.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...