Accuracy assessment of the Non-Ideal Computational Fluid Dynamics model for siloxane MDM from the open-source SU2 suite
Résumé
The first-ever accuracy assessment of a computational model for Non-Ideal Compressible-Fluid Dynamics (NICFD) flows is presented. The assessment relies on a comparison between numerical predictions, from the open-source suite SU2, and pressure and Mach number measurements of compressible fluid flows in the non-ideal regime. Namely, measurements regard supersonic flows of siloxane MDM (Octamethyltrisiloxane, C 8 H 24 O 2 Si 3) vapor expanding along isentropes in the close proximity of the liquid-vapor saturation curve. The model accuracy assessment takes advantage of an Uncertainty Quantification (UQ) analysis, to compute the variability of the numerical solution with respect the uncertainties affecting the test-rig operating conditions. This allows for an uncertainty-based assessment of the accuracy of numerical predictions. The test set is representative of typical operating conditions of Organic Rankine Cycle systems and it includes compressible flows expanding through a converging-diverging nozzle in mildly-to-highly non-ideal conditions. All the considered flows are well represented by the computational model. Therefore, the reliability of the numerical implementation and the predictiveness of the NICFD model are confirmed.
Origine | Accord explicite pour ce dépôt |
---|
Loading...