Energy-aware resources in Digital Twin: the case of injection molding machines - Archive ouverte HAL
Chapitre D'ouvrage Année : 2019

Energy-aware resources in Digital Twin: the case of injection molding machines

Résumé

Many initiatives aim at describing the objectives and functionalities of the so-called digital twin of manufacturing systems. Considering the assets, the twin is meant to be able to both exhibit the actual and current states of the resources, and provide some estimates about the future behaviour of these resources. To target the sustainability pillar of future industrial systems, the energy monitoring and management are critical issues. Consequently, the integration of multi-physics models helping to model the resources inside the twin is a major issue to deal with. This article introduces a framework integrating the models inside the twin of the ARTI architecture, proposes a methodology to implement the twin on a resource and illustrates these ideas in a case study on injection moulding machines.
Fichier principal
Vignette du fichier
SOHOMA19_DT_R1 (1).pdf (710.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02382494 , version 1 (27-11-2019)

Identifiants

Citer

Pierre Castagna, Nadine Allanic, Yannick Madec, Stéphanie Jegouzo, Olivier Cardin, et al.. Energy-aware resources in Digital Twin: the case of injection molding machines. Service Oriented, Holonic and Multi-agent Manufacturing Systems for Industry of the Future. SOHOMA 2019., 853, Springer Cham, pp.183-194, 2019, Studies in Computational Intelligence, ⟨10.1007/978-3-030-27477-1_14⟩. ⟨hal-02382494⟩
96 Consultations
267 Téléchargements

Altmetric

Partager

More