The effect of the terminal penalty in receding horizon control for a class of stabilization problems - Archive ouverte HAL
Article Dans Une Revue ESAIM: Control, Optimisation and Calculus of Variations Année : 2020

The effect of the terminal penalty in receding horizon control for a class of stabilization problems

Résumé

The Receding Horizon Control (RHC) strategy consists in replacing an infinite-horizon stabilization problem by a sequence of finite-horizon optimal control problems, which are numerically more tractable. The dynamic programming principle ensures that if the finite-horizon problems are formulated with the exact value function as a terminal penalty function, then the RHC method generates an optimal control. This article deals with the case where the terminal cost function is chosen as a cutoff Taylor approximation of the value function. The main result is an error rate estimate for the control generated by such a method, when compared with the optimal control. The obtained estimate is of the same order as the employed Taylor approximation and decreases at an exponential rate with respect to the prediction horizon. To illustrate the methodology, the article focuses on a class of bilinear optimal control problems in infinite-dimensional Hilbert spaces.
Fichier principal
Vignette du fichier
1811.02426.pdf (367.64 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02372077 , version 1 (17-12-2019)

Identifiants

Citer

Karl Kunisch, Laurent Pfeiffer. The effect of the terminal penalty in receding horizon control for a class of stabilization problems. ESAIM: Control, Optimisation and Calculus of Variations, 2020, 26, 58, ⟨10.1051/cocv/2019037⟩. ⟨hal-02372077⟩
81 Consultations
86 Téléchargements

Altmetric

Partager

More