A Structured Prediction Approach for Label Ranking - Archive ouverte HAL
Communication Dans Un Congrès Année : 2018

A Structured Prediction Approach for Label Ranking

Résumé

We propose to solve a label ranking problem as a structured output regression task. In this view, we adopt a least square surrogate loss approach that solves a supervised learning problem in two steps: a regression step in a well-chosen feature space and a pre-image (or decoding) step. We use specific feature maps/embeddings for ranking data, which convert any ranking/permutation into a vector representation. These embeddings are all well-tailored for our approach, either by resulting in consistent estimators, or by solving trivially the pre-image problem which is often the bottleneck in structured prediction. Their extension to the case of incomplete or partial rankings is also discussed. Finally, we provide empirical results on synthetic and real-world datasets showing the relevance of our method.
Fichier principal
Vignette du fichier
8114-a-structured-prediction-approach-for-label-ranking.pdf (356.21 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02371075 , version 1 (19-11-2019)

Identifiants

  • HAL Id : hal-02371075 , version 1

Citer

Anna Korba, Alexandre Garcia, Florence d'Alché-Buc. A Structured Prediction Approach for Label Ranking. Nips 2018, Dec 2018, Montreal, Canada. ⟨hal-02371075⟩
43 Consultations
202 Téléchargements

Partager

More