New Weak Error bounds and expansions for Optimal Quantization - Archive ouverte HAL
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2020

New Weak Error bounds and expansions for Optimal Quantization

Résumé

We propose new weak error bounds and expansion in dimension one for optimal quantization-based cubature formula for different classes of functions, such that piecewise affine functions, Lipschitz convex functions or differentiable function with piecewise-defined locally Lipschitz or α-Hölder derivatives. This new results rest on the local behaviors of optimal quantizers, the L r-L s distribution mismatch problem and Zador's Theorem. This new expansion supports the definition of a Richardson-Romberg extrapolation yielding a better rate of convergence for the cubature formula. An extension of this expansion is then proposed in higher dimension for the first time. We then propose a novel variance reduction method for Monte Carlo estimators, based on one dimensional optimal quantizers.
Fichier principal
Vignette du fichier
NewErrorBound.pdf (739.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02361644 , version 1 (13-11-2019)
hal-02361644 , version 2 (09-01-2020)
hal-02361644 , version 3 (01-05-2020)

Identifiants

Citer

Vincent Lemaire, Thibaut Montes, Gilles Pagès. New Weak Error bounds and expansions for Optimal Quantization. Journal of Computational and Applied Mathematics, inPress, 371, pp.112670. ⟨10.1016/j.cam.2019.112670⟩. ⟨hal-02361644v3⟩
108 Consultations
131 Téléchargements

Altmetric

Partager

More