Intermediate Jacobians and rationality over arbitrary fields - Archive ouverte HAL
Article Dans Une Revue Annales Scientifiques de l'École Normale Supérieure Année : 2023

Intermediate Jacobians and rationality over arbitrary fields

Résumé

We prove that a three-dimensional smooth complete intersection of two quadrics over a field k is k-rational if and only if it contains a line defined over k. To do so, we develop a theory of intermediate Jacobians for geometrically rational threefolds over arbitrary, not necessarily perfect, fields. As a consequence, we obtain the first examples of smooth projective varieties over a field k which have a k-point, and are rational over a purely inseparable field extension of k, but not over k.

Dates et versions

hal-02358005 , version 1 (11-11-2019)

Identifiants

Citer

Olivier Benoist, Olivier Wittenberg. Intermediate Jacobians and rationality over arbitrary fields. Annales Scientifiques de l'École Normale Supérieure, 2023, 56 (4), pp.1029-1084. ⟨10.48550/arXiv.1909.12668⟩. ⟨hal-02358005⟩
83 Consultations
0 Téléchargements

Altmetric

Partager

More