Recent Advances in End-to-End Spoken Language Understanding - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Recent Advances in End-to-End Spoken Language Understanding

Résumé

This work deals with spoken language understanding (SLU) systems in the scenario when the semantic information is extracted directly from the audio speech signal by means of a single end-to-end neural network model. We consider two SLU tasks: named entity recognition (NER) and semantic slot filling (SF). For these tasks, in order to improve the model performance, we explore various strategies including speaker adaptive training and sequential pretraining schemes.
Fichier principal
Vignette du fichier
SLSP_2019_slu.pdf (380.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02353011 , version 1 (07-11-2019)

Identifiants

Citer

Natalia Tomashenko, Antoine Caubrière, Yannick Estève, Antoine Laurent, Emmanuel Morin. Recent Advances in End-to-End Spoken Language Understanding. 7th International Conference on Statistical Language and Speech Processing (SLSP), Oct 2019, Ljubljana, Slovenia. ⟨10.1007/978-3-030-31372-2_4⟩. ⟨hal-02353011⟩
212 Consultations
96 Téléchargements

Altmetric

Partager

More