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Abstract. This work deals with spoken language understanding (SLU) systems
in the scenario when the semantic information is extracted directly from the audio
speech signal by means of a single end-to-end neural network model. We consider
two SLU tasks: named entity recognition (NER) and semantic slot filling (SF).
For these tasks, in order to improve the model performance, we explore various
strategies including speaker adaptive training and sequential pretraining schemes.

Keywords: Spoken language understanding (SLU) · Acoustic adaptation · End-
to-end SLU · Slot filling · Named entity recognition.

1 Introduction

Spoken language understanding (SLU) is an important component of dialog systems.
Traditional SLU systems consist of at least two components: (1) an automatic speech
recognition (ASR) system that transcribes acoustic speech signal into word sequences
and (2) a natural language understanding (NLU) system which predicts, given the out-
put of the ASR system, named entities, semantic or domain tags, and other language
characteristics depending on the considered task. In classical approaches, these two
systems are often built and optimized independently.

Recent advances in deep learning have impacted many research and industrial do-
mains and in particular have boosted the progress in conversational artificial intelligence
(AI) and its applications. Most of the state-of-the art SLU and conversational AI sys-
tems employ neural network models [11]. Nowadays there is a great interest of the re-
search community in end-to-end systems for various speech and language technologies.
A few recent papers [22, 17, 26, 12, 5, 19] present ASR-free end-to-end approaches for
SLU tasks and show promising results. These methods aim to learn SLU models from
acoustic signal without intermediate text representation. Paper [5] proposed an audio-
to-intent architecture for semantic classification in dialog systems. An encoder-decoder
framework [28] is used in paper [26] for domain and intent classification, and in [17]
for domain, intent, and argument recognition. A different approach based on the model
trained with the Connectionist Temporal Classification (CTC) criterion [14] was pro-
posed in [12] for named entity recognition (NER) and slot filling. End-to-end methods
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are motivated by the following factors: (1) possibility of better information transfer
from the speech signal due to the joint optimization on the final objective function, and,
in particular, leveraging errors from the ASR system and focusing on the most impor-
tant information; and (2) simplification of the overall system and elimination of some
of its components. However, deep neural networks and especially end-to-end models
often require more training data to be efficient. For SLU, this implies the demand of big
semantically annotated corpora. In this work, we explore different ways to improve the
performance of end-to-end SLU systems.

2 SLU tasks

In SLU for human-machine conversational systems, an important task is to automati-
cally extract semantic concepts or to fill in a set of slots in order to achieve a goal in
a human-machine dialogue. In this paper, we consider two SLU tasks: named entity
recognition (NER) and semantic slot filling (SF). In the NER task, the purpose is to
recognize information units such as names, including person, organization and location
names, dates, events and others. In the SF task, the extraction of wider semantic infor-
mation is targeted. These last years, NER and SF where addressed as word labelling
problems, through the use of the classical BIO (begin/inside/outside) notation [23]. For
instance, ”I would like to book three double rooms in Paris for tomorrow” will be rep-
resented for the NER and SF task as the following BIO labelled sentences:

– NER: ”I::∅would::∅ like::∅ to::∅ book::∅ three::B-amount double::∅ rooms::∅ in::∅ Paris::B-
location/city for::∅ tomorrow::B-time/date”.

– SF: ”I::B-command would::I-command like::I-command to::I-command book::I-command
three::B-room/number double::B-room/type rooms::I-room/type in::∅ Paris::B-location/city
for::∅ tomorrow::B-time/date”.

In this paper, similarly to [12], the BIO representation is abandoned in profit to a
chunking approach. For instance for NER, the same sentence will be presented as:

– NER: ”I would like to book <amount three > double rooms in <location/city Paris > for
<time/date tomorrow >”.

In this study, we train an end-to-end neural model to reproduce such textual repre-
sentation from speech. Since our neural model emits characters, we use specific char-
acters corresponding to each opening tag (one by named entity category or one by
semantic concept), while the same symbol is used to represent the closing tag.

3 Model training

End-to-end training of SLU models is realized through the recurrent neural network
(RNN) architecture and CTC loss function [14] as shown in Figure 1. A spectrogram of
power normalized audio clips calculated on 20ms windows is used as the input features
for the system. As shown in Figure 1, it is followed by two 2D-invariant (in the time and-
frequency domain) convolutional layers, and then by five BLSTM layers with sequence-
wise batch normalization. A fully connected layer is applied after BLSTM layers, and
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the output layer of the neural network is a softmax layer. The model is trained using the
CTC loss function. The neural architecture is similar to the Deep Speech 2 [1] for ASR.

The outputs of the network depend on the task. For ASR, the outputs consist of
graphemes of a corresponding language, a space symbol to denote word boundaries and
a blank symbol. For NER, in addition to ASR outputs, we add outputs corresponding
to named entity types and a closing symbol for named entities. In the same way, for SF
task, we use all ASR outputs and additional tags corresponding to semantic concepts
and a closing symbol for semantic tags.

In order to improve model training, we investigate speaker adaptive training (SAT),
pretraining and transfer learning approaches. First, we formalize the ?-mode, that proved
its effectiveness in all our previous and current experiments.

3.1 CTC loss function interpretation related to ?-mode

The CTC loss function [14] is relevant to train models for ASR without Hidden Markov
Models. The ?-mode can be seen as a minor modification of the CTC loss function.

CTC loss function definition By means of a many-to-one B mapping function, CTC
transforms a sequence of the network outputs, emitted for each acoustic frame, to a
sequence of final target labels by deleting repeated output labels and inserting a blank
(no label) symbol. The CTC loss function is defined as:

LCTC = −
∑

(x,l)∈Z

lnP (l|x), (1)

where x is a sequence of acoustic observations, l is the target output label sequence,
and Z the training dataset. P (l|x) is defined as:

P (l|x) =
∑

π∈B−1(l)

P (π|x), (2)

where π is a sequence of initial output labels emitted by the model for each input frame.
To compute P (π|x) we use the probability of the output label πt emitted by the neural
model for frame t to build this sequence. This probability is modeled by the value ytπt

given by the output node of the neural model related to the label πt. P (π|x) is defined
as P (π|x) =

∏T
t y

t
πt
, where T denotes the number of frames.

CTC loss function and ?-mode In the framework of the ?-mode, we introduce a
new symbol, ”?”, that represents the presence of a label (the opposite of the blank
symbol) that does not need to be disambiguated. We expect to build a model that is more
discriminant on the important task-specific labels. For example, for the SF SLU task
important labels are the ones corresponding to semantic concept opening and closing
tags, and characters involved in the word sequences that support the value of these
semantic concepts (i.e characters occurring between an opening and a closing concept
tag). In the CTC loss function framework, the ?-mode consists in applying another kind
of mapping function before B. While B converts a sequence π of initial output labels
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into the final sequence l to be retrieved, we introduce the mapping function S that is
applied to each final target output label. Let C be the set of elements li included in
subsequences lba ⊂ l such as la is an opening concept tag and lb the associated closing
tag; i, a and b are indexes that handle positions in sequence l, and a ≤ i ≤ b. Let V
be the vocabulary of all the symbols present in sequences l in Z, and let consider the
new symbol ? /∈ V . Let define V ? = V ∪ {?}, and L (resp. L?) the set of all the label
sequences that can be generated from V (resp. V ?).

Considering n as the number of elements in l, m an integer such as m ≤ n, we
define the mapping function S : L→ L?, l 7→ l′ in two steps:

1. ∀lj ∈ l

{
lj /∈ C ⇒ l′j = ?

lj ∈ C ⇒ l′j = lj
2. ∀l′j ∈ l′ l′j−1 = ?⇒ l′j = ∅

(3)

By applying S on the last example sentence used in Section 2 for NER, this sentence
is transformed to:

– sent: ”I would like to book <amount three > double rooms in <location/city Paris > for
<time/date tomorrow >”.

– S(sent): ”* <amount three > * <location/city Paris > * <time/date tomorrow >”.

To introduce ?-mode in the CTC loss function definition, we modify the formulation
of P (l|x) in formula (2) by introducing the S mapping function applied to l:

P (l|x) =
∑

π∈B−1◦S(l)

P (π|x). (4)

3.2 Speaker adaptive training

Differences between training and testing conditions may significantly reduce recogni-
tion accuracy in ASR systems and degrade performance of other speech-related tech-
nologies. Adaptation is an efficient way to reduce the mismatches between the models
and the data from a particular speaker or channel. For many decades, acoustic model
adaptation has been an essential component of any state-of-the-art ASR system. For
end-to-end approaches, speaker adaptation is less studied, and most of the first end-to-
end ASR systems do not use any speaker adaptation and are built on spectrograms [1] or
filterbank features [2]. However, some recent works [7] demonstrated the effectiveness
of speaker adaptation for end-to-end models.

For SLU tasks, there is also an emerging interest in the end-to-end models which
have a speech signal as input. Thus, acoustic, and particularly speaker, adaptation for
such models can play an important role in improving the overall performance of these
systems. However, to our knowledge, there is no research on speaker adaptation for
end-to-end SLU models, and the existing works do not use any speaker adaptation.

One way to improve SLU models which we investigate in this paper is speaker
adaptation. We apply i-vector based speaker adaptation [25]. The proposed way of inte-
gration of i-vectors into the end-to-end model architecture is shown in Figure 1. Speaker
i-vectors are appended to the outputs of the last (second) convolutional layer, just before
the first recurrent (BLSTM) layer. In this paper, for better initialization, we first train a
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model with zero pseudo i-vectors (all values are equal to 0). Then, we use this pretrained
model and fine-tune it on the same data but with the real i-vectors. This approach was
inspired by [6], where an idea of using zero auxiliary features during pretraining was
implemented for language models and in our preliminary experiments it demonstrated
better results than direct model training with i-vectors.

Input speech audio

i-vector

Output character sequence

CTC

Softmax

Fully connected

BLSTM

Convolutional 

(2D invariant)

Spectrogram

Named entities or Semantic tags Graphemes 

Fig. 1. Universal end-to-end deep neural network model architecture for ASR, NER and SF tasks.
Depending on the current task, the set of the output characters (targets) consists of: (1) ASR:
graphemes for a given language; (2) NER: graphemes and named entity tags; and (3) SF:
graphemes and semantic SF tags.

3.3 Transfer learning

Transfer learning is a popular and efficient method to improve the learning performance
of the target predictive function using knowledge from a different source domain [20].
It allows to train a model for a given target task using available out-of-domain source
data, and hence to avoid an expensive data labeling process, which is especially useful
in case of low-resource scenarios.

In this paper, for SF, we investigate the effectiveness of the transfer learning paradigm
for various source domains and tasks: (1) ASR in the target and out-of-domain lan-
guages; (2) NER in the target language; (3) slot filling (SF). For all the tasks, we used
similar model architectures (Section 4.2 and Figure 1). The difference is in the text data
preparation and output targets. For training ASR systems, the output targets correspond
to alphabetic characters and a blank symbol. For NER tasks, the output targets include
all the ASR targets and targets corresponding to named entity tags. We have several
symbols corresponding to named entities (in the text these characters are situated be-
fore the beginning of a named entity, which can be a single word or a sequence of
several words) and a one tag corresponding to the end of the named entity, which is the
same for all named entities.

Similarly, for SF tags, we use targets corresponding to the semantic concept tags and
one tag corresponding to the end of a concept. Transfer learning is realized through the
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chain of consequence model training on different tasks. For example, we can start from
training an ASR model on audio data and corresponding text transcriptions. Then, we
change the softmax layer in this model by replacing the targets with the SF targets and
continue training on the corpus annotated with semantic tags. Further in the paper, we
denote this type of chain asASR→SF . Models in this chain can be trained on different
corpora, that can make this method especially useful in low-resource scenario when we
do not have enough semantically annotated data to train an end-to-end model, but have
sufficient amount of data annotated with more general concepts or only transcribed data.
For NER, we also investigates the knowledge transfer from ASR.

Table 1. Corpus statistics for ASR, NER and SF tasks.

Task Corpora Size,h #Speakers
ASR train EPAC, ESTER 1,2, ETAPE, REPERE, DECODA, MEDIA, PORTMEDIA 404.6 12518

NER train EPAC, ESTER 1,2, ETAPE, REPERE 323.8 7327
NER dev ETAPE (dev) 6.6 152
NER test ETAPE (test), Quaero (test) 12.3 474

SF train 1. MEDIA (train), 16.1 727
2. PORTMEDIA (train) 7.2 257

SF dev MEDIA (dev) 1.7 79
SF test MEDIA (test) 4.8 208

4 Experiments

4.1 Data

Several publicly available corpora have been used for experiments (see Table 1).

ASR data The corpus for ASR training was composed of corpora from various eval-
uation campaigns in the field of automatic speech processing for French, as shown in
Table 1. The EPAC [9], ESTER 1,2 [10], ETAPE [15], REPERE [13] contain tran-
scribed speech in French from TV and radio broadcasts. These data were originally
in the microphone channel and for experiments in this paper were downsampled from
16kHz to 8kHz, since the test set for our main target task (SF) consists of telephone con-
versations. The DECODA [3] corpus is composed of dialogues from the call-center of
the Paris transport authority. The MEDIA [8, 4] and PORTMEDIA [18] are corpora of
dialogues simulating a vocal tourist information server. The target language in all exper-
iments is French. For experiments with transfer learning from ASR built in a different
source language (English in our case) to SF in the target language, we used the TED-
LIUM corpus [24]. This publicly available dataset contains 1495 TED talks in English
that amount to 207 hours speech data from 1242 speakers, 16kHz. For experiments, we
downsampled the audio data to 8kHz.

NER data To train the NER system, we used the following corpora: EPAC, ESTER 1,2,
ETAPE, and REPERE. These corpora contain speech with text transcriptions and named
entity annotation. The named entity annotation is performed following the methodology
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of the Quaero project [16]. The taxonomy is composed of 8 main types: person, func-
tion, organization, location, product, amount, time, and event. Each named entity can
be a single word or a sequence of several words. The total amount of annotated data is
112 hours. Based on this data, a classical NER system was trained using NeuroNLP24

to automatically extract named entities for the rest 212 hours of the training corpus.
This was done in order to increase the amount of the training data for NER. Thus, the
total amount of audio data to train the NER system is about 324 (112+212) hours. The
development part of the ETAPE corpus was used for development, and as a test set we
used the ETAPE test and Quaero test datasets.

SF data The following two French corpora, dedicated to semantic extraction from
speech in a context of human/machine dialogues, were used in the current experiments:
MEDIA and PORTMEDIA (see Table 1). The corpora have manual transcription and
conceptual annotation. A concept is defined by a label and a value, for example with
the concept date, the value 2001/02/03 can be associated [29, 8]. The MEDIA corpus is
related to the hotel booking domain, and its annotation contains 76 semantic tags: room
number, hotel name, location, date, room equipment, etc. The PORTMEDIA corpus is
related to the theater ticket reservation domain and its annotation contains 35 semantic
tags which are very similar to the tags used in the MEDIA corpus. For joint training on
these corpora, we used a combined set of 86 semantic tags.

4.2 Models

We used the deepspeech.torch implementation5 for training speaker independent mod-
els, and our modification of this implementation to integrate speaker adaptation. The
open-source Kaldi toolkit [21] was used to extract 100-dimensional speaker i-vectors.
All models had similar topology (except for the number of outputs) shown in Figure 1
for SAT models. Speaker independent models were trained in the same way, but with-
out i-vector integration. Input features are spectrograms. They are followed by two 2D-
invariant (in the time and-frequency domain) convolutional layers6, and then by five
800-dimensional BLSTM layers with sequence-wise batch normalization. A fully con-
nected layer is applied after BLSTM layers, and the output layer of the neural network
is a softmax layer. The size of the output layer depends on the task (see Section 4.3).
The model is trained using the CTC loss function.

4.3 Tasks

The target tasks for us are NER and SF. For each of this task, other tasks can be used
for knowledge transfer. To train NER, we use ASR for transfer learning. To train SF,
we use ASR on French and English, NER and another auxiliary SF task for transfere
learning. Hence, we consider the following set of tasks:

4 https://github.com/XuezheMax/NeuroNLP2
5 https://github.com/SeanNaren/deepspeech.pytorch
6 With parameters: kernel size=(41, 11), stride=(2, 2), padding=(20, 5)



8 N. Tomashenko et al.

– ASRF – French ASR with 43 outputs {French characters, blank symbol}.
– ASRE – English ASR with 28 outputs {English characters, blank symbol}.
– NER – French NER with 52 outputs {43 outputs from ASRF , 8 outputs corresponding to

named entity tags, 1 output corresponding to the closing tag for all named entities}.
– SF1 – target SF task with 130 outputs {43 outputs from ASRF , 86 outputs for semantic

slot tags, 1 output for the closing tag}; trained on the training part of the MEDIA corpus.
– SF1+2 – auxiliary SF task; trained on the MEDIA plus PORTMEDIA training corpora.

For the target tasks NER and SF1, we also considered ?-mode (Section 3.1), de-
noted respectively NER? and SF ?1 .

4.4 Results for NER

Performance of NER was evaluated in terms of precision, recall, and F-measure. Re-
sults for different training chains for speaker-independent (SI) and speaker adaptive
training models (SAT) are given in Table 2. We can see, that pretraining with ASRF
task does not lead to significant improvement in performance. When the NER? is
added to the training chain, it improves all the evaluation measures. In particular, F-
measure is increased by 1.9% absolute. For each training chain, we trained a corre-
sponding chain with speaker adaptation. Results for SAT models are given in the right
part of Table 2. We can see, that for all training chains, SAT models outperform SI
models. The best result with SAT (F-measure 71.8%) outperforms the best SI result by
1.1% absolute.

Table 2. NER results on the test dataset in terms of Precision (P,%), Recall (R,%) and F-measure
(F, %) for SI and SAT models.

Model training SI SAT
P R F P R F

NER 78.9 60.7 68.6 80.9 60.9 69.5
ASRF→NER 80.5 60.0 68.8 80.2 61.7 69.7
ASRF→NER→NER? 82.1 62.1 70.7 83.1 63.2 71.8

4.5 Results for SF

SF performance was evaluated in terms of F-measure, concept error rate (CER) and
concept value error rate (CVER). Training performance on the MEDIA development
dataset in terms of character error rate (CER) is shown in Figure 2 for different trans-
fer learning chains for SI and SAT models. The blue curves SF1 corresponds to the SI
baseline model when the model was directly trained on the target SF task without pre-
training. All curves of other colours correspond to different sequential transfer learning
chains. We can observe, that all considered transfer learning schemes substantially im-
prove the training performance. By comparing SF1 and SF1+2, we can conclude that
training on the auxiliary task improves the performance. However, when we further
trained this model on the target task (chain: SF1+2→SF1), the performance continued
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to improve. This demonstrates, that in given conditions, the sequence transfer learn-
ing provides better improvement than just joint training. The best SI model is obtained
through the following training chain: ASRF→SF1+2→SF1. These results are con-
firmed further in Table 3. Also, we can see that SAT gives an additional improvement
in performance for all the models. For better models the improvement from SAT is less
noticeable, than for the worse ones.
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Fig. 2. Training performance on the MEDIA development dataset in terms of character error
rate (CER) for training SF models. For each type of the model chain, a solid line corresponds
to a speaker-independent model, and a dash line of the same colour denotes a speaker adaptive
training (SAT) version of a given model.

Results for different training chains for speaker-independent (SI) models on the test
set are given in Table 3 (#1–8). The first line SF1 shows the baseline result on the test
MEDIA dataset for the SF task, when a model was trained directly on the target task
using in-domain data for this task (training part of the MEDIA corpus). The second line
SF1+2 corresponds to the case when the model was trained on the auxiliary SF task.
Other lines in the table correspond to different training chains described in Section 3.3.
In #4, we can see a chain that starts from training an ASR model for English. We can
observe that using a pretrained ASR model from a different language can significantly
(16.2% of relative CER reduction) improve the performance of the SF model (#4 vs #3).
This result is noticeable since it shows that we can take benefit from linguistic resources
from another language in case of lack of data for the target one. Using an ASR model
trained in French (#5) provides better improvement: 36.0% of relative CER reduction
(#5 vs #3). When we start the training process from a NER model (#6) we can observe
slightly better results. Further, for the best two model training chains (#5 and 6) we
trained corresponding models in ?-mode (#7 and 8). Results with speaker adaptation
for four best models are shown in the right part of Table 3 (#9–12). We can see that
SAT models show better results than SI ones. For CVER, we can observe a similar
tendency. The results for the best models using beam search and a 4-gram LM are
shown in brackets in blue. The LM was built on the texts including ”?”. Finally, Table 4
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Table 3. SF performance results on the MEDIA test dataset for end-to-end SF models trained
with different transfer learning approaches. Results are given in terms of F-measure (F), CER
and CVER metrics (%); SF1 – target task; SF1+2 – auxiliary task; F and E refer to the languages.
For the best models, the results in blue correspond to decoding using beam search with a LM.

Model training SI SAT
# F CER CVER # F (LM) CER (LM) CVER (LM)

SF1 1 72.5 39.4 52.7
SF1+2 2 73.2 39.0 50.1
SF1+2→SF1 3 77.4 33.9 44.9
ASRE→SF1+2→SF1 4 81.3 28.4 37.3

ASRF→SF1+2→SF1 5 85.9 21.7 28.4 9 87.5 19.4 25.4
NER→SF1+2→SF1 6 86.4 20.9 27.5 10 87.3 19.5 26.0
ASRF→SF1+2→SF ?1 7 85.9 21.2 27.9 11 87.7 (89.2) 18.8 (16.5) 25.5 (20.8)
NER→SF1+2→SF ?1 8 87.1 19.5 27.0 12 87.6 (89.2) 18.6 (16.2) 24.6 (20.8)

Table 4. SF performance results on the MEDIA test dataset for different systems.

Systems in literature: CER Systems in this paper: CER
Pipeline: ASR+SLU, [27] 19.9 —gready mode 18.6
End-to-end, [12] 27.0 —beam search with LM 16.2

resumes our best results (in greedy and beam search modes) and shows the comparison
results on the MEDIA dataset from other works [27, 12]. We can see, that the reported
results significantly outperform the results reported in the literature for the current task.

Error analysis In the training corpus, different semantic concepts have different num-
ber of samples, that may impact the SF performance. Figure 3 demonstrates the relation
between the concept error rate (CER) of a particular semantic concept and its frequency
in the training corpus. Each point in Figure 3 corresponds to a particular semantic con-
cept. For rare tags, the distribution of errors has larger variance and means than for
more frequent tags. In addition, we are interested in the distribution of different types
of SF errors (deletions, insertions and substitutions), which is shown in the form of a
confusion matrix in Figure 4. For better representation, we first ordered the concepts in
descending order by the total number of errors. Then, we chose the first 36 concepts
which have the biggest number of errors. The total amount of errors of the chosen 36
concepts corresponds to 90% of all the errors for all concepts in the test MEDIA dataset.
The diagonal corresponds to the correctly detected concepts and other elements (except
for the last row and last column) correspond to the substitution errors. The final raw
represents insertion errors and the final column – deletions. Each element in the matrix
shows the total number of the corresponding events (’correctly recognized concept’,
’substitution’, ’deletion’ or ’insertion’ ) normalized by the total number of such events
in the row. The most frequent errors are deletions (50% of all errors), then substitutions
(32.3%) and insertions (17.7%).
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Fig. 3. Concept error rate (CER,%) results on the MEDIA test dataset for different concepts
depending on the number of corresponding concepts in the training corpus. The CER results
are given for the SAT model (#12), decoding with beam search and a 4-gram LM.

5 Conclusions

In this paper, we have investigated several ways to improve the performance of end-
to-end SLU systems. We demonstrated the effectiveness of speaker adaptive training
and various transfer learning approaches for two end-to-end SLU tasks: NER and SF.
In order to improve the quality of the SF models, during the training, we proposed to
use knowledge transfer from an ASR system in another language and from a NER in a
target language. Experiments on the French MEDIA test corpus demonstrated that us-
ing knowledge transfer from the ASR in English improves the SF model performance
by about 16% of relative CER reduction for SI models. The improvement from the
transfer learning is greater when the ASR model is trained on the target language (36%
of relative CER reduction) or when the NER model in the target language is used for
pretraining. Another contribution concerns SAT training for SLU models – we demon-
strated that this can significantly improve the model performance for NER and SF.
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