ON-TRAC Consortium End-to-End Speech Translation Systems for the IWSLT 2019 Shared Task
Résumé
This paper describes the ON-TRAC Consortium translation systems developed for the end-to-end model task of IWSLT Evaluation 2019 for the English→ Portuguese language pair. ON-TRAC Consortium is composed of researchers from three French academic laboratories: LIA (Avignon Univer-sité), LIG (Université Grenoble Alpes), and LIUM (Le Mans Université). A single end-to-end model built as a neural encoder-decoder architecture with attention mechanism was used for two primary submissions corresponding to the two EN-PT evaluations sets: (1) TED (MuST-C) and (2) How2. In this paper, we notably investigate impact of pooling heterogeneous corpora for training, impact of target tokeniza-tion (characters or BPEs), impact of speech input segmenta-tion and we also compare our best end-to-end model (BLEU of 26.91 on MuST-C and 43.82 on How2 validation sets) to a pipeline (ASR+MT) approach.
Domaines
Informatique et langage [cs.CL]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...