Robust Low-rank Change Detection for SAR Image Time Series - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Robust Low-rank Change Detection for SAR Image Time Series

Résumé

This paper considers the problem of detecting changes in mul-tivariate Synthetic Aperture Radar image time series. Classical methodologies based on covariance matrix analysis are usually built upon the Gaussian assumption, as well as an unstructured signal model. Both of these hypotheses may be inaccurate for high-dimension/resolution images, where the noise can be heterogeneous (non-Gaussian) and where all channels are not always informative (low-rank structure). In this paper, we tackle these two issues by proposing a new detector assuming a robust low-rank model. Analysis of the proposed method on a UAVSAR dataset shows promising results .
Fichier principal
Vignette du fichier
DEMR19046.1571407227_preprint.pdf (1.32 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02345330 , version 1 (04-11-2019)
hal-02345330 , version 2 (20-07-2020)

Identifiants

  • HAL Id : hal-02345330 , version 1

Citer

Ammar Mian, Arnaud Breloy, Guillaume Ginolhac, Jean-Philippe Ovarlez. Robust Low-rank Change Detection for SAR Image Time Series. IGARSS 2019, Jul 2019, YOKOHAMA, Japan. ⟨hal-02345330v1⟩
156 Consultations
140 Téléchargements

Partager

More