VEGF (Vascular Endothelial Growth Factor) Functionalized Magnetic Beads in a Microfluidic Device to Improve the Angiogenic Balance in Preeclampsia - Archive ouverte HAL
Article Dans Une Revue Hypertension Année : 2019

VEGF (Vascular Endothelial Growth Factor) Functionalized Magnetic Beads in a Microfluidic Device to Improve the Angiogenic Balance in Preeclampsia

Résumé

Preeclampsia is a hypertensive pregnancy disease associated with a massive increase in sFlt-1 (soluble form of the vascular endothelial growth factor 1) in the maternal circulation, responsible for angiogenic imbalance and endothelial dysfunction. Pilot studies suggest that extracorporeal apheresis may reduce circulating sFlt-1 and prolong pregnancy. Nonspecific apheresis systems have potential adverse effects because of the capture of many other molecules. Our concept is based on a specific and competitive apheresis approach using VEGF (vascular endothelial growth factor) functionalized magnetic beads to capture sFlt-1 while releasing endogenous PlGF (placental growth factor) to restore a physiological angiogenic balance. Magnetic beads were functionalized with VEGF to capture sFlt-1. Experiments were performed using PBS, conditioned media from human trophoblastic cells, and human plasma. The proof of concept was validated in dynamic conditions in a microfluidic device as an approach mimicking real apheresis. Magnetic beads were functionalized with VEGF and characterized to evaluate their surface ligand density and recognition capabilities. VEGF-coated magnetic beads proved to be an efficient support in capturing sFlt-1 and releasing PlGF. In static conditions, sFlt-1 concentration decreased by 33±13%, whereas PlGF concentration increased by 27±10%. In dynamic conditions, the performances were improved, with 40% reduction of sFlt-1 and up to 2-fold increase of free PlGF. The sFlt-1/PlGF ratio was reduced by 63% in the plasma of preeclamptic patients. Apheresis was also associated with VEGF release. A ligand-based approach using VEGF-coated beads is an effective approach to the capture of sFlt-1 and the release of endogenous PlGF. It offers new perspectives for the treatment of preeclampsia.

Dates et versions

hal-02343967 , version 2 (03-11-2019)
hal-02343967 , version 1 (20-12-2022)

Identifiants

Citer

Laura Trapiella-Alfonso, Lucile Alexandre, Camille Fraichard, Kelly Pons, Simon Dumas, et al.. VEGF (Vascular Endothelial Growth Factor) Functionalized Magnetic Beads in a Microfluidic Device to Improve the Angiogenic Balance in Preeclampsia. Hypertension, 2019, 74 (1), pp.145-153. ⟨10.1161/HYPERTENSIONAHA.118.12380⟩. ⟨hal-02343967v1⟩
273 Consultations
252 Téléchargements

Altmetric

Partager

More