Hopf algebras on decorated noncrossing arc diagrams
Résumé
Noncrossing arc diagrams are combinatorial models for the equivalence classes of the lattice congruences of the weak order on permutations. In this paper, we provide a general method to endow these objects with Hopf algebra structures. Specific instances of this method produce relevant Hopf algebras that appeared earlier in the literature.
Domaines
Combinatoire [math.CO]
Fichier principal
Pilaud_HopfAlgebrasNoncrossingArcDiagrams_JCTA.pdf (398.86 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...