Backward Nonlinear Smoothing Diffusions - Archive ouverte HAL
Rapport (Rapport De Recherche) Année : 2019

Backward Nonlinear Smoothing Diffusions

Résumé

We present a backward diffusion flow (i.e. a backward-in-time stochastic differential equation) whose marginal distribution at any (earlier) time is equal to the smoothing distribution when the terminal state (at a latter time) is distributed according to the filtering distribution. This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochastic) flow. This solution contrasts with, and complements, the (backward) deterministic flow of probability distributions (viz. a type of Kushner smoothing equation) studied in a number of prior works. A number of corollaries of our main result are given including a derivation of the time-reversal of a stochastic differential equation, and an immediate derivation of the classical Rauch-Tung-Striebel smoothing equations in the linear setting.
Fichier principal
Vignette du fichier
backward-smoothing-arxiv-v1.pdf (413.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02342600 , version 1 (01-11-2019)

Identifiants

Citer

Brian D O Anderson, Adrian N Bishop, Pierre del Moral, Camille Palmier. Backward Nonlinear Smoothing Diffusions. [Research Report] ANU; UTS; INRIA; IMB. 2019. ⟨hal-02342600⟩
74 Consultations
221 Téléchargements

Altmetric

Partager

More