Harmonic morphisms from Einstein 4-manifolds to Riemann surfaces - Archive ouverte HAL
Article Dans Une Revue International Journal of Mathematics Année : 2012

Harmonic morphisms from Einstein 4-manifolds to Riemann surfaces

Marina Ville

Résumé

If M and N are Riemannian manifolds, a harmonic morphism f : M → N is a map which pulls back local harmonic functions on N to local harmonic functions on M. If M is an Einstein 4-manifold and N is a Riemann surface, John Wood showed that such an f is holomorphic w.r.t. some integrable complex Hermitian structure defined on M away from the singular points of f. In this paper we extend this complex structure to the entire manifold M. It follows that there are no non-constant harmonic morphisms from S4 or CP2 to a Riemann surface. The proof relies heavily on the real analyticity of the whole situation. We conclude by an example of a non-constant harmonic morphism CP2#CP2 from to S2.
Fichier non déposé

Dates et versions

hal-02341859 , version 1 (31-10-2019)

Identifiants

Citer

Marina Ville. Harmonic morphisms from Einstein 4-manifolds to Riemann surfaces. International Journal of Mathematics, 2012, 14 (03), pp.327-337. ⟨10.1142/S0129167X0300179X⟩. ⟨hal-02341859⟩
29 Consultations
0 Téléchargements

Altmetric

Partager

More