Nonnegative control of finite-dimensional linear systems - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2021

Nonnegative control of finite-dimensional linear systems

Résumé

We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulations.
Fichier principal
Vignette du fichier
DiscHeat.pdf (4.83 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02335968 , version 1 (28-10-2019)

Identifiants

Citer

Jérôme Lohéac, Emmanuel Trélat, Enrique Zuazua. Nonnegative control of finite-dimensional linear systems. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2021, 38 (2), pp.301-346. ⟨10.1016/j.anihpc.2020.07.004⟩. ⟨hal-02335968⟩
471 Consultations
178 Téléchargements

Altmetric

Partager

More