Twistable electronics with dynamically rotatable heterostructures
Résumé
The electronic properties of two-dimensional materials and their heterostructures can be dramatically altered by varying the relative angle between the layers. This makes it theoretically possible to realize a new class of twistable electronics in which device properties can be manipulated on-demand by simply rotating the structure. Here, we demonstrate a new device architecture in which a layered heterostructure can be dynamically twisted, in situ. We study graphene encapsulated by boron nitride where at small rotation angles the device characteristics are dominated by coupling to a large wavelength Moiré superlattice. The ability to investigate arbitrary rotation angle in a single device reveals new features in the optical, mechanical and electronic response in this system. Our results establish the capability to fabricate twistable electronic devices with dynamically tunable properties.
Domaines
Gaz Quantiques [cond-mat.quant-gas]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...