Existence of infinite-energy and discretely self-similar global weak solutions for 3D MHD equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Existence of infinite-energy and discretely self-similar global weak solutions for 3D MHD equations

Résumé

This paper deals with the existence of global weak solutions for 3D MHD equations when the initial data belong to the weighted spaces $L^2_{w_\gamma}$, with $w_\gamma(x)=(1+\vert x\vert)^{-\gamma}$ and $0 \leq \gamma \leq 2$. Moreover, we prove the existence of discretely self-similar solutions for 3D MHD equations for discretely self-similar initial data which are locally square integrable. Our methods are inspired of a recent work of P. Fern\'aidez-Dalgo and P.G. Lemarié-Rieusset for the 3D Navier-Stokes equations.
Fichier principal
Vignette du fichier
Infinite-energy-selfsimilar-MHD.pdf (807.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02332520 , version 1 (24-10-2019)

Identifiants

  • HAL Id : hal-02332520 , version 1

Citer

Pedro Gabriel Fernández-Dalgo, Oscar Jarrin. Existence of infinite-energy and discretely self-similar global weak solutions for 3D MHD equations. 2019. ⟨hal-02332520⟩
74 Consultations
49 Téléchargements

Partager

More