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Existence of infinite-energy and discretely
self-similar global weak solutions for 3D MHD
equations

Pedro Gabriel Ferndndez-Dalgo*!, Oscar Jarrin

Abstract

This paper deals with the existence of global weak solutions for 3D
MHD equations when the initial data belong to the weighted spaces
Lf,h, with w. () = (1+]z]|)™” and 0 < v < 2. Moreover, we prove the
existence of discretely self-similar solutions for 3D MHD equations for
discretely self-similar initial data which are locally square integrable.
Our methods are inspired of a recent work [7] for the Navier-Stokes
equations.

Keywords : MHD equations, weighted L? spaces, discretely self-similar

solutions, energy controls.
AMS classification : 35Q30, 76D05.

1 Introduction

The Cauchy problem for the incompressible and homogeneous magneto-
hydrodynamic equations (MHD) equations in the whole space R? writes down

as:
du=Au—(u-V)u+(b-V)b—-Vp+V_.F,
db=Ab — (u-V)b+ (b-V)u,

V.ou=0,V-b=0, (1)

U(O, ) = Uy, b(07 ) - b07

(MHD)

\
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where the fluid velocity field u : [0, +00) x R* — R3, the magnetic field
b : (0,4+00) x R* — R3 and the fluid pressure p : [0, +00) x R® — R are
the unknowns, and the fluid velocity at t = 0: uy : R® — R3, the mag-
netic field at ¢ = 0: by : R* — R3 and the tensor F = (F,;)1<; j<3 (where
F;;:]0,+00) x R* = RY) whose divergence V - F represents a volume force
applied to the fluid, are the data of the problem.

In this article, we will focus on the following simple generalisation of
(MHD) equations:

(( u=Au— (u-V

(MHDG)

\

where in the second equation we have added an extra gradient term Vg,
which is an unknown, and an extra tensor field G = (G} j)1<i j<3 which is a
datum. This generalized system does not present extra mathematical difficul-
ties but it appears in physical models when Maxwell’s displacement currents
are considered [Il, [I7]. Moreover, we will construct solutions for (MHDG)
such that G = 0 implies ¢ = 0 (see the equation 1) below), and it justifies
the fact that (MHDG) generalizes (MHD) from the mathematical point of
view.

In the recent work [7] due to P. Fernandez & P.G. Lemarié-Rieusset, which
deals with the homogeneous and incrompressible Navier-Stokes equations in
the whole space R3:

du=Au—(u-V)u—-Vp+ V. F,

(NS) V-u=0, u(0,-)=uy,

the authors established new energy controls which allow them to develop a
new theory to construct infinite-energy global weak solutions of equations
(NS) arising from large initial datum uy belonging to the weighted space
L}, = L*(w,dx), where for v > 0 we have w,(z) = (1 + |z])77. Thereafter,
in [3], Bradshaw, Tsai & Kukavika give an improvement of main theorem in
[7] with respect to the initial data, they consider a zero forcing tensor and
the method of their proof does not permit to adapt easily it to other cases,
essentially because of your pressure treatment. However, the pressure term



is well-characterized in [7] for initial data in larger spaces that the weighted
spaces considered so far in dimension 3.

For other constructions of infinite-energy weak solutions for the (NS)
equations see the articles [2][4][10][11] [13] and the books [14] [15].

Due to the fact that equations (NS) and (MHDG) have a similar structure,
the main purpose of this article is to adapt the new energy methods given
in [7] for (NS) to the more general setting of the coupled system (MHDG).
These methods allow us to prove the existence of infinite-energy global weak
solutions for the equations (MHDG) and our first result reads as follows:

Theorem 1 Let 0 < v < 2. Let 0 < T < 4o00. Let ug, by be divergence-
[ree vector fields such that (ug, by) € L7, (R®). Let F and G be tensors such
that (F,G) € L*((0,T),L; ). Then, the system (MHDG) has a solution
(u, b,p,q) which satisfies :

o u, b belong to L>((0,T), L7, ) and Vu, Vb belong to L*((0,T), L2, ).

e The pressure p and the term q are related to w, b, F and G by

p= Z RiR;(uiuj — bib; — Fij)

1<i4,j<3

and

¢=— Y RRGiy). (3)

1<i,j<3

e The mapt € [0,400) — (u(t), b(t)) is weakly continuous from [0, 400)
to Liw, and s strongly continuous att =0 :

lim [|(w(t, -) — uo, b(t,-) — bo)llzz_ = 0.

t—0

e the solution (u,b,p,q) is suitable : there exist a non-negative locally
finite measure p on (0,+00) x R* such that

—v.([%+%+p}u)+v-<[(u-b)+q]b) (4)

tu-(V-F)+b-(V-G)—p.



The solutions given by Theorem enjoy interesting properties as a con-
sequence of Thorem [3] below.

On the other hand, the theory of infinite-energy global weak solutions
for the (NS) equations developed in [7] has a prominent application to the
construction of global weak discretely self-similar solutions. More precisely,
the energy controls obtained in [7] allow the authors to give a new proof of
the existence of those solutions arising from discretely self-similar initial data
which are locally square integrable vector fields (proven before in [6] by Chae
and Wolf and in [5] by Bradshaw and Tsai).

In the next result, we follow this new approach to construct discretely
self-similar solutions for the (MHDG) equations. We start by remember the
definition of the A-discretely self-similarity (see |6, [7]):

Definition 1.1

o A wvector field ug € L2 (R3) is A-discretely self-similar (ug is A-DSS)

loc

if there exists A > 1 such that Aug(Ar) = ug(x).

e A time dependent vector field w € LZ ([0, 400) x R?) is A-DSS if there

loc

exists A > 1 such that Au(\*t, \z) = u(t, x).

o A forcing tensor F, € L2 ([0, +00) x R3) is A\-DSS if there exists A > 1

loc

such that NX*F(\*t, \x) = F(¢, z).

In this setting, our second result is the following one:

Theorem 2 Let 4/3 < v < 2 and X > 1. Let ug, by be \-DSS divergence-
free vector fields which belong to qu7 (R3), and moreover, let F,G be A-DSS
tensors which belong to Lj,.((0,4+00), L2 ). Then, the (MHDG) equations

has a global weak solution (u, b, p,q) such that :
e u, bis a \-DSS vector fields.

o for every 0 < T < +4o0, u, b belong to L>((0,T), L) and Vu, Vb
belong to L*((0,T), L3, ).

e The mapt € [0,400) — (u(t), b(t)) is weakly continuous from [0, 400)
to quv, and s strongly continuous at t = 0.

o (u,b,p,q) is suitable : it verifies the local energy inequality .



Let us emphasize that the main contribution of this work is to establish
new a priori estimates for (MHDG) equations (see Theorem 3| below) and
moreover, to show that it is simple to adapt for the (MHDG) equations the
method given for the (NS) equations in [7]. In this setting, we warn that
the proofs of the results in sections 3, 4 and 5 and Proposition keep
close to their analogous in [7], but we write them in detail for the reader
understanding.

Moreover, it is worth to remark the fact that the method developed in
[7] is very robust. We were able to adapt it for 3D (MHD) equations but
its reach goes beyond, we emphasize that its application depends essentially
on the fact that the equation admits approximate solutions with an energy
balance which has a similar structure to the energy balance in the (NS) equa-
tions.

The article is organized as follows. All our results deeply base on the
study of an advection-diffusion system (AD) below and this study will be
done in Section Then, Section is devoted to the proof of Theorem
Finally, in Section [5|we give a proof of Theorem [2]

2 The advection-diffusion problem

From now on, we focus on the setting of the weighted Lebesgue spaces L%, .
Let us start by recalling their definition. For 0 < ~ and for all z € R? we de-
fine the weight w,(x) = m, and then and we denote L, = LP(w,(z) dx)
with 1 < p < 4o0.

As mentioned before, all our results base on the properties of the fol-
lowing advection-diffusion problem: for a time 0 < T < 400, let v,c €
L3((0,T),L3 ) be time-dependent divergence free vector-fields, then we

W3~ /2
consider the following system

( Ou=Au— (v-V)u+(c-V)b—-Vp+ V- F,
Ob=Ab—(v-V)b+ (c-V)u—-Vqg+ V-G,
V-u=0,V-b=0,

u(0,-) = ug, b(0,-) = by,

(AD)

\

where (u, b, p, q) are the unknowns. In the following sections, we will prove
all the properties of the (AD) system that we shall need later.



2.1 Characterisation of the terms p and ¢ and some
useful results

In this section we give a characterisation of the pressure p and the term ¢
(analogous to that made in [7]) in the (AD) system:

Proposition 2.1 Let0) <~y < g and0 < T < 4o00. LetF(t,z) = (Fi’j(t,x))1<ij<3
and G(t,z) = (Gy;(t,2)),; ;<3 be tensors such that F € L2((0,7), L?Uﬂ/) and
G € L*((0,7),L},). Let v,c € L*((0,7T),L;

wSV/Z) be time-dependent diver-
gence free vector-fields.

Let (u, b) be a solution of the following advection-diffusion problem

du=Au—(v-V)u+(c-V)b—Vp+ VT,
0b=Ab— (v-V)b+ (c-V)u—Vi+ V-G, (5)
V-u=0,V-b=0,

such that u,b € L=((0,T), L3 ), Vu,Vb € L*((0,T), L3 ), and more-
over, p and ¢ belongs to D'((0,T) x R?).

Then, the gradient terms (Vp, V{) are necessarily related to (u, b, v, u)

and F and G through the Riesz transforms R; = \/B_LA by the formulas

1<4,j<3
and
Vg=V ( Z RiRj(Uibj — CjUu; — Gi,j)) )
1<4,j<3
where,
Z RiRj<uin — UiCj), Z RiRj(Uibj - ciuj> S Lg(([)?T)v L?u/(f) (6)
1<i,j<3 1<4,5<3 ’
and
1<i,j<3 1<i,j<3

The proof of this result deeply bases on some useful technical lemmas estab-
lished in [7], Section 2 (see also [8,19]):



Lemma 2.1 Let 0 < <3 and 1 < p < +o0o. The Riesz transforms R; and
the Hardy-Littlewood maximal function operator M are bounded on LP

ws
IR fls, < Cpallfllun, and [Mylizy, < Cosllfllus, -

This lemma has an important corollary which allows us to study the convo-
lution operator with a non increasing kernel:

Lemma 2.2 Let 0 < § < 3 and 1 < p < 4oo. If § € L*(R?) is a non-
negative, radial function and is radially non-increasing then for all f € LP

wes?
10 fllze, < Cosllfllzs, [10]]:-
With these lemmas at hand, we are able to give a proof of Proposition

Proof. We define the functions p and ¢ as follows:
P = Z R[Rj(uivj — biCj — E,j) and q = Z Rsz (’Uibj — CGiUuj; — Gi,j)~
1<i,j<3 1<i,j<3

Then, by the information of the functions (u, b, v, c,F, G) given above, using
interpolation, Holder inequalities and the Lemma (as we have 0 < v < g)

we obtain @ and .

We will prove now that we have V(p — p) = 0 and V(¢ — q) = 0. Taking
the divergence operator in the equations , as the functions (u, b, v, c) are
divergence-free vector fields we obtain A(p—p) = 0 and A(¢—¢q) = 0. Then,
let @ € D(R) be such that a(t) = 0 for all || > e (with € > 0) and moreover,
let 8 € D(R?). Thus, we have (Vix(a®p), Vix(a®pB)) € D ((s,T—¢)xR?).

For t € (¢,T — ¢) fix, we define
Aapr = (VD (a®B) = Vpx (a® B))(t,.),

Bapr = (Vix (@) = Vg (a®f))({L,.).

Then, as Vp and V¢ verify the equations and moreover, by the properties
of the convolution product, we can write

Aopr=(u* (0@ f+a®@AB)+(—u®@v+bc) (@ VP))(t.)
+F - (a@ VA))(t..) — (p* (a® VA)(L,.),
and

Bupi =(b* (~00® B +a @ AB)+ (—bov+umc)- (0@ VA)(L,.)
+ G- (@@ VP)(t,.) — (g* (a® VP))(t,.).

7



Recall that for ¢ € D(R?) we have | f x| < C,M and then, by Lemma

we get that a convolution with a function in D(R?) is a bounded operator on
Lﬁ)7 and on ng/; /5 Thus we have that Ay g1, Bag: € LZ)7 —i—L?U/Gi /5~ Moreover,
6/5

for 0 < 0 such that max{~, %} <6 <5/2, we have Aq gy, Aape € Lugss)
and in particular, we have that A, g, and B, g, are tempered distribution.

With this information, and the fact that we have AA, 3 = (o ® () *
(A(p —p))(t,.) = 0, and similarly we have AB, g; = 0, we find that A, s;
and B, p; are polynomials. But, remark that for all 1 < r < 400 and
0 <0 < 3, the space Ly, does not contain non-trivial polynomials and then
we have A,3; = 0 and B,g; = 0. Finally, we use an approximation of
identity a(%)5(2%) to obtain that V(p —p) = 0 and V(g — ¢) = 0. o

To finish this section, we state s Sobolev type embedding which will be
very useful in the next section (for a proof see Section 2 in [7]).

Lemma 2.3 Ford > 0. Let f € L. such that Vf € L then f € L},  and
1z, < Cs(llfllza, + 1V fllzz,)-

w36

2.2 A priori uniform estimates for the (AD) system

In order to simplify the notation, for a Banach space X C D’ of vector fields
endowed with a norm || - ||x, we will write

1w, v)[I% = llull% + IvI%,
and

IV, v)|I% = [Vulx + IV

Theorem 3 Let 0 < v < 2 and 0 < T < 4oo. Let u, by € L7, (R?)
be a divergence-free vector fields and let F,G € LQ((O,T),LfUW) be two ten-
sors F(t,x) = (Fp;(t,2),; e Glt,x) = (Gij(t, )< <5 Let v.c €
L3((0,T), Lf”svm) be time-dependent divergence free vector-fields.

Let (u, b,p,q) be a solution of the following advection-diffusion problem
([ du=Au— (v-V)u+ (¢c-V)b—Vp+V-F,
Ob=Ab— (v-V)b+ (c-V)u—Vq+ V-G,
Vou=0,V-b=0, (8)

w(0,) = g, b(0,-) = by.

(AD)

which satisfies :



o u, b belong to L>((0,T), L7, ) and Vu, Vb belong to L*((0,T), L3, )

e the pressure p and the term q are related to u, b, F and G through the

Riesz transforms R; = \/% by the formulas

p= Y RRj(uw;—bic; — Fi))

1<i,j<3

and

q = Z RiRj(Uibj — CZ"LL]' — Gi,j)

1<i,j<3

where, for every 0 < T < 400,

Z RiRj('U,Z'Uj — ’UZ‘CJ'), Z RIRJ (Uibj — CZ'UJ') c L4((0,T), L?/;)
5

1<i,j<3 1<1,5<3
and Zlgi,jg{; RiR;F;;, Zlgi,jg:s RiR;Gi; € L2((O, T), L?uv)-

e the map t € [0,+00) — (u(t), b(t)) is weakly continuous from [0, +00)
to Liw, and s strongly continuous att =10 :

e the solution (u,b,p,q) is suitable : there exist a non-negative locally
finite measure p on (0,+00) x R* such that

ul” + [b]”

ul? + |b|?
a2 uf + b

2
— V- (pu) =V (¢b) + V- ((u- b)c)
+u (V-F)+b-(V-G)—p.

) =A(

ul? b|?
) — |Vul* = Vb =V - ((% + %n)

(9)

Then we have the following controls:



o [f0 <~ <2, for almost every a > 0 (including 0) and for all t > a,
t
I(w OO, +2 [ (17w BEIE; )ds
t
snuawam@z—1/L/kuf+wm%-wamds

u|2 |b|2 t
—+— v] - Vw, drds + 2 pu- Vw,dz ds
t
—|—2/ /qb-vad:vds%—/ /[(u-b)c]-vad:vds
// F; ;(0;u;) wydxds—i-//quZ (wy) - Vw, dzds)
1<4,5<3

- //G” 3b)w7dacds+/ /G”ba (wy) dzds),

1<4,5<3

(10)

which implies in particular that the map t — (wu(t), b(t)) from [0, +00)
to L?U7 18 stronly continuous almost everywhere and

HWM@M%+lWWMW®ﬁ@®
ﬂ@WW@ﬁq¢WEm@mﬂs (11)
+@Lh+mumw@wﬂWMWﬂ@)w
o Siv =0, for almost alla > 0 (including 0) for all t > a,

nmwmmﬁa/mvmw@ﬁww

<[|(w, b)(a)|z-
t
+ > // 05 dxds+/ /Gi,jaibj dx ds),
1<4,5<3 a

which implies of course that the map t — (u(t), b(t)) from [0,+00) to
L?UW 15 stronly continuous almost everywhere.

Proof. We consider the case 0 < v < 2 (the changes required for the
case 7 = 0 are obvious). Let 0 < ¢ty < t; < T, we take a non-decreasing

10



function o € C*(R) equal to 0 on (—oo, 3

0 <n<min(®2,T —t), let

) and equal to 1 on (1, +00). For

t—to t—t
) —af
U U

). (12)

O ot (t) = O./(

Remark that a4, converges almost everywhere to 1y, ,,; when n — 0 and
Orouy 104, 1s the difference between two identity approximations, the first one
in to and the second one in t;.

Consider a non-negative function ¢ € D(R?) which is equal to 1 for |z] < 1
and to 0 for |z| > 2. We define

Or(r) = ¢(5)- (13)

For ¢ > O, we let Wr e = m <1f’}/:O, Wry,e = 1 )

We have ay, 401, (£)0r(2)w, (x) € D((0, T)xR3) and vy 4, 4, (t)pr(2)w, ((2) >
0. Thus, using the local energy balance @ and the fact that the measure
verifies p > 0, we find

ul? |b]?
— //% + %atan,to,hgbl%w%e d(L’ dS +/ |V11|2 + |Vb|2 a777t07t1¢Rw%€dx dS

3
== Z //(@-u ‘u+9b - b) ay 1 (W, 0i9r + PrROW, () d ds
i=1

3 2 2

u b,

=50 I+ ey o s i+ 6n0i ) o s
=1

3
+ Z //[(u -b)ci + gbilan o4, (We. 050k + PROW, () dx ds
i=1

_ Z (// F; jujon 1 4, (W0y 0i0R + pRrOW, ) dx ds + // F; j0iu; oty 1, 0r Az ds)

1<i,j<3

— Z (/ Ginjamtmh (w%ﬁiqéR + ¢R&-w%6) drds + / Gi,jaibj Oy to,t1 (bR dz dS)

1<i,j<3

Independently from R > 1 and € > 0, we have (for 0 < v < 2)

WA~\T
‘w'y,eai(éR’ + ’¢Raiw7,e| < C'yl A/( )

+ ||

< Cywsy 2().

11



As u, b belong to L=((0, T), L, )NL*((0,T), L, ) hence to L*((0,T), L3, )

W3y /2

and T < 400, we have as well u,b € LS((O T) L3 ). Also, we have

wd/

pui, qbi € Ly, 1,2 SINCE WP, W, q € L2((0,T), L5 + L?) and w, jou, w, 2b €
L*((0,T),L* N LY). Later, we will use dominated convergence using this
remarks. First, we let n go to 0 and we find that

‘“‘2 |b|20 did Vul? + |Vb? dr d
n—>0 Oy 10,1, PR Az ds + |Vu|® 4 |Vb|* ¢rw, dxds

— Z/ /(&u -u+ 8Zb : b) (ww@igbR + QSR@iw%e) dx ds
|11|2 |'0|2

+ Z/ / —— + )i + pui) (W, O;0r + PrOW, () dv ds

¥ Z / [0 B+ ablws Do+ G ) s

/ / Ui (W, 0;0R + QRO W dxds—l—/ / jOiu; opdrds)

1<4,j<3

/ /G”b (W, c0i0R + GROW, () d:zcds—i—/ /Gwﬁb prdxds)

1<4,j<3

when the limit in the left side exists. Let

Ap(t) = /(IU(t,x)IQer(t,%)\ )R ()W, () d,

since

ul? |bl? 1
—//(% + | 2| )0kt 10,41 PRW~ e dT ds = _5/8t04n,t0,t1AR,e(s> ds

We have for all ¢y and ¢; Lebesgue points of the measurable functions Ag,,

: Iul2 Ibl2 1
lim — —_—+ — 8tozn,t07tl¢3w%e dr ds = —(AR@(tl) — AR,E(t(])),
n—0 2

Then, by continuity, we can let ¢y go to 0 and thus replace ty by 0 in the
inequality. Moreover, if we let t; go to ¢, then by weak continuity, we find
that

AR,e( ) < lim ARe(t1>

t1—t

12



so that we may as well replace ¢, by ¢ € (¢;,7). Thus we find that for almost
every a € (0,7) (including 0) and for all ¢t € (0,7"), we have:

1 t
£ (Ar(t) — Ar(a) + / / Vul? + [Vb|? dnuw,.dz ds
3 t
== Z/ /(aill ‘u+0;b-b) (w, 0idr + prOw,, ) dr ds
2 b 2
+ Z/ / H + u Jvi + pu;)(wy,0;0r + PrO W, ) d ds

* Z / / [(u-b)c; + qbi) (s, 0idr + drOw,.() da ds

/ /F,juj Wy 0i0r + GrROW, ) dxds—/ /Fwﬁu] drdrds)

1<4,5<3

//G”b (W, 0i0R + PRW, O, ) dxds—/ /Gmab PrW,  dx ds),

1<4,5<3

Taking the limit when R go to +o00 and then € go to 0, by dominated con-
vergence we obtain the energy control . We let ¢ go to a in , SO
that

lim sup “(uoovbooxt)“%%u < H(uombm)(a)”i?ﬂ :
t—0 v v

Also, as uy is weakly continuous in L?UW,
(use, boc) (@), < iminf || (s, bo) (1),

Thus ||(teo, boo)(@)]|22 = limy—o || (Uso, Poo) (£)[|32 , as we work in a Hilbert

space, this fact and the weak continuity of the map t — u(t) € quW implies
strongly continuity almost everywhere.

Now, to obtain , in the energy control we have the following

estimates:
t
§2fy/ /]uHVu]wvdxds
0

t
//V]u]Q-vadsds
0
1 2 2 [C i
<= [ |IVull7: ds+ 4y lull72 ds,
4 Jo o 0 e

and

t 1 t t
0 0 . 0 wy

13



Then, for the pressure terms p and ¢ we write p = p;1 +po and ¢ = ¢1 + ¢
where

ZZRR viu; — ¢;bj), ZZRR

=1 j=1 i=1 j=1

and 3 3 3 3
DO RLIEEIES B RL

Since wey /5 € Ag/s we have the following control

t
‘/ / (lu]v + [b*v + ((u- b)e) + 2pyu + 2qib) - V(w,) dz ds
0

t
= 7/ / (lul?|v] + [bl[v] + [u|[bllc| + 2|p1| + 2lqi[c| [u]) w2 da ds
0
t
<C, / w26 ([lws[v][ullless + l[wsle] [bllls/s) ds
t
+C, / [w!/2bll6([|w, b [v|]l6/5 + llw,]e] [ullle/s) ds

1 t t
<3 [ Ivalty ds+ oy [l v, + i vl ,
0 0 3v/2

W3y /2

w3 3v/2

t
+Cv/0 HbH%ZMHCH%?rw » +HuHL2 Ibllzz,_llellzs,  ds
1 [ 2 2 2
+— [ [IVb|7: ds+C, “b“L%U |IVI|st +||b||Lz [vllzs, ds
4 Jo v 0 "

CESD)
t
2 2
0, [l el ds

w3 v/2

and since w, € A,

t
pou - Vw.,dx ds + / /ng - Vw,dx ds

¢ ¢
SC'W/ /|p2||u|w7dxds+07/ /|q2||b|wvda:ds

t t
<C, [ (alky, + lpslz )ds + €, [ IbIE,, + el ds

14



For the other terms, we have

t t
> (] [@s@ue, + Fudw)deds| <, [ [Vl + [uw, drds

1<4,5<3

1 t t t
<3 [ IVl ds+o [l dsvc [ IR, ds

and

t t
3 (/ /Gi,j(aibj)ww G0 (w,)) da ds gcv/ /|F|(\Vu!+]u|)wwdxd5

1<i,j<3

1 t t t
<3 [IvblE, dsvc, [ bl asec, [ElE, ds

Hence we have found the estimate and Theoremis proven. o

3 Consequence of Gronwall type inequalities
and the a priori estimates.

3.1 Control for passive transportation.

Using the Gronwall inequalities, the following corollary is a direct conse-
quence of Theorem

Corollary 3.1 Under the assumptions of Theorem[?], we have

sup ||(u,0)]|72
0<t<T v

CW(T+T1/3H(1’»C)H2Lg((O T),L3 ))
< (1o, B3, + €4 (IE, G022, ) €
and
IV (u, b)| £2((0,7),22,,)
C’Y(T—"_Tl/:;H(%c)Hiii((o T) L3 / ))
il b 1U3,Y 2

< (1o, Bo)lIZa, + CI(F, ) 2oz, ) ) e

where C, only depends on .

Another direct consequence is the following uniqueness result for the advection-
diffusion problem (AD).
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Corollary 3.2 . Let 0 <y < 2. Let 0 < T < +oo. Let ug, by € L, (R?)
be divergence-free vector fields and F(t,x) = (Fi;(t, 7)), ;<3 and G(t,z) =
(Fij(t, @) <; j<5 be tensors such that F(t,x),G € L*((0,T), L7, ). Let v, c €
L*((0,7), L3, ,) be a time-dependent divergence free vector-fields. Assume
moreover that v, ¢ € L?L°(K) for every compact subset K of (0,T) x R3.

Let (uy, by, p1,q1) and (uy, by, p1,q1) be two solutions of the advection-
diffusion problem

([ Ou=Au— (v-V)u+(c-V)b—Vp+V-F,
Ob=Ab— (v-V)b+ (c-V)u—Vqg+ V-G,
V-u=0,V-b=0,
| w(0.) = . 0(0.) = by
which satisfies fork =1 ork =2 :
o wy, by belong to Lm((O,T),LfUW) and Vuy, Vby, belong to L*((0,T), L2, )

e tlhe terms py, qi satisfy
Pr = Z RiRj(uk,in - bk,icj - Evj)’
1<i,5<3

and

qr = Z RZ‘R]'(’Uika — CiUk,j — Gi,j)‘

1<i,j<3

e themapt € [0, +00) — (wu(t), bi(t)) is weakly continuous from [0, 4+o00)
to Lfvw, and s strongly continuous att =0 :

Then (w1, by, p1,q1) = (wi, by, p1, q1).

Proof. We proceed as in [7] (see Corollary 5). Let w = u; —ug, d =
by — by, p=p1 — ps and ¢ = g1 — ¢». Then we have

(( Ow=Aw — (v-V)w+ (c-V)d — Vp,
Od=Ad— (v-V)d+ (c-V)w — Vg,
V-w=0,V-d=0,

u(0,-) =0, b(0,-) = 0.

\

For all compact subset K of (0,7)xR?* w®v,d®c, d®v and c®@w are in
L2L2, and these terms belong to L3((0,T), LS ). Let ¢, € D((0,T) x R?)

W6 /5

such that 1 = 1 on the neigborhood of the support of ¢, so that
p=¢RIRWP(vAW—-—c®d))+¢RIR((1-¢)(vedw—-c®d)).

16



We have that
PR @ R(W(vew—c®d))|rzre < Coyllo(vew—c@d)|pzre

and

leR@R(A=P)(vew—c®d))|ue < Copl(vow—c@d)] s

with

1/6
1+ ly)\°
Co < Cllgllult = vl sup | [ (— < +oo,
TESUpD ¥ yESupp (1—1) |l‘ - y|

and we have analogue estimates for ¢oq. Thus, we may take the scalar product
of Oy,w with w and 9;,d with d and find that

wi* + |df?
2

w|® +[d|?

2
—V-(pw) =V (¢gd) + V- ((w-d)c)
+tw (V-F)+d- (V- G).

) - (= vap - v (5 )

) =A(

The assumptions of Theorem [3]are satisfied then we use Corollary[3.1]to find
that w = 0 and b = 0 and consequently p = 0 and ¢ = 0. o

3.2 Control for active transportation.

We remember the following lemma (for a proof see [7]) :

Lemma 3.1 If « is a non-negative bounded measurable function on [0,T)
which satisfies, for two constants A, B > 0,

t
Mﬂ§A+B/1+M@%&
0

If Ty > 0 and Ty = min(T, Ty, 43

W), we have, for every t € [0,T}],
a(t) < V2(A+ BTy).

Now we able to prove the following result.

Corollary 3.3 Under the hypothesis of Theorem@ Assume that (v, c) is
controlled by (u, b) in the following sense: for everyt € (0,T),

I(o.e) (B3, | < Coll(w OO, -

17



Then there exists a constant C, > 1 such that if Ty < T is such that

2

To
ca@+wwm%mg-+/ WEGM%tB)ngl
Y 0 Y
then

To
sup [l(w DO, < €0+ N o)l + [ IFGIE, i

0<t<To

and

To To
| IV b, ds < 00+ iy, + [ IE.G;, o)

Proof. By we can write:

DO, + [ 190 b)), ds
ﬂme@ﬁQAWWW%%%
0, [+l b)), ) ds

Then, as we have

IV ) (@)llzg, , < Coll(w, b))z, < CoCyll(b)llzz, (I b)llzz, +1V(w,b)z).
we obtain
@ b)Ols, +5 [ IV b, ds
t
<[I(uo, bo)zz + CV/O I(F,G) ()72 ds + 207/0 1w, b) ()72 + Coll(w, b)(s)ll75_ ds.
Finally, for t < Ty we get
Il b)OlEs, +5 [ IV@ b2 ds
To t
<lobollly, +C; [ IEGIE: ds+0,0+C) [ IOl + 1Bl ds
and then we may conclude with Lemma o

18



3.3 Stability of solutions for the (AD) system

In this section we establish we following stability result for the advection-
diffusion system below:

Theorem 4 Let 0 < v < 2. Let 0 < T < +o0. Let Uy, by, € LZH(R?’)
be divergence-free vector fields. Let F,, G, € L2((O,T),L12UW) be tensors.

Let vy, ¢, be time-dependent divergence free vector-fields such that v,, ¢, €
L*((0,7), L3, ,)-

W3y /2

Let (wn, by, pnqn) be solutions of the following advection-diffusion prob-
lems

( Oyu, = Au, — (v, - V)u, + (¢, - V)b, — Vp, + V- F,,
Ob, = Ab, — (v, - V)b, + (¢, - V)u, — Vg, + V- G,,
V-u,=0, V-b, =0,

w, (0, ) = g p, by(0,-) = bop.

(AD,) (14)

\

verifying the same hypothesis of Theorem 3]

If (uo,n, bon) is strongly convergent to (Up oo, bo o) i1 Lfvv, if the sequence
(Fn, Gy) s strongly convergent to (Foo, Goo) in L*((0,T), L7, ), and more-
over, if the sequence (v,, ¢,) is bounded in L*((0,T), Lf’UM/Q), then there exists

Uso, Dooy Voo Coos Poos Qoo AN an increasing sequence (ny)gen with values in N
such that

o (ty,, b,,) converges *weakly to (s, bso) in L*((0,T), L, ), (Vt,, Vb,,)
converges weakly to (Vuu, Vboo) in L*((0,T), Ly, ).

o (v, Cp,) converges weakly to (Vso, C) N L3((O,T),L?USW2), (Prgs Gny)
converges weakly to (Peo, ¢oo) in L3((0,T), Lﬁ,/;) + L*((0,7), L}, ).

5

o (u,,, b, ) converges strongly to (U, bsy) in LE_([0,T) xR3) : for every

loc
Ty € (0,T) and every R > 0, we have

To
lim /| (|t (5, 9) = oo (5, ) [P+ (5, 4) = boo (5, y)[*) ds dy = 0.
0 y|<R

k—+o0
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Moreover, (Uso, boo, Poo, @) 15 a solution of the advection-diffusion prob-
lem

Do = AUy — (Voo - V)Uoo + (€0 * V)boo — Voo + V - Foy,
Orboo = Abs — (Voo - V)b + (Coo - V)Uoo — Vo + V - G,
V-t =0, Vb =0,

Uso (0, ) = Up oo, boo(0,+) = by oo

(ADx)

\

(15)
and verify the hypothesis of Theorem@

Proof. Assume that (ug,, bg ) is strongly convergent to (ug o, bo o) i L?M,
assume that the sequence (F,,G,) is strongly convergent to (F,Go) in
L*((0,T), L3, ), and moreover, assume that the sequence (v,,c,) is bounded
in L3((0,7), Lf’ug ). Then, by Theorem and Corollary , we know

that (u,,b,) is bounded in L*>((0,7T), L ) and (Vu,, Vb,,) is bounded in
L*((0,T), L?HW). In particular, writing p,, = py1 + Pn,2 With

pnl—ZZRR Un,illp,j — an nj ZZRR nzg

=1 j=1 i=1 j=1

and qn = qn,1 + qn,2 with

3

3 3 3
Iny = Z Z RiR;j(Vnibpnj — Cpiting), Ga=— Z Z RiRij(Grij),

i=1 j=1 i=1 j=1

we get that (pp.1, gn,1) is bounded in L*((0,7), L?U/fv) and (pn, 2, ¢n,2) is bounded
5

in L2((0,7), I2,).

Let ¢ € D(R?). We have that (pu,, ¢b,,) are bounded in L*((0,7), H').
Moreover, by equations and by the expressions for p,, and ¢, above, we
get that (pd,u,, d;b,) are bounded in L2L% + L*W~16/> 1 [2H~! and then
they are bounded in L?((0,T), H~%). Thus, by a Rellich-Lions lemma there
exist (Us,boo) and an increasing sequence (ng)gen with values in N such
that (u,,, by, ) converges strongly to (Uw, bs) in L ([0, T) x R?) : for every
Ty € (0,T) and every R > 0, we have

k——+o0 0

To
lim /Iwm@w—%@wmwm@w—M@wW@wzo
y|<R

20



Using the Banach—Alaoglu’s theorem, there exist (v, Co) such that

(Vg Cny,) converge weakly to (Veo, €oo) in L3((0,7), L, .,»)- In particular,

we have that the terms vy, jUn, j, Cnp.ibngjs Unyibn,; and cp, iUy, ; in the
transport terms in equations are weakly convergent in (L5/°L5/%),.. and
thus in D'((0,T) x R?). As those terms are bounded in L*((0,T), L?U/; ), they

are weakly convergent in L3((0,7), qu/(;) t0 boo,iloo,j-

o

Define ps = Poo,1 + Doo,2 With

pool—ZZRR Voo,iloo,j — COOZbOOj ZZRR 002]
J=1

=1 j=1 =1
and Goo = Goo,1 + 0,2 with

3 3

3 3
Goo,1 = Z Z RiRj (Uoo,iboo,j - Coo,iuoo,j)7 q2 = — Z Z Rz‘Rj(Goo,i,j)-

i=1 j=1 i=1 j=1
As the Riesz transforms are bounded the spaces Lwﬁv and L2 , we find that

(Pry1sGn,1) are weakly convergent in L3((0,7T), L6/5 5 ) O (poo,1,qoo,1), and
5

moreover, we find that (pn, 2, qn, 2) is strongly convergent in L*((0,T), LZ)V)
t0 (Poo,2; Goo,2)-

With those facts, we obtain that (Ue, Poo, Poo, §eo) Verify the following
equations in D'((0,T) x R3):
Oy = Ay, — (Voo - V)Uoo + (€0 - V)b — Voo + V- Fo,
Obso = Aby — (Voo - V)boo + (€0 - VU — Voo + V - G,
V-u, =0, V-by, =0.

In particular, we have that (0;u.., ;bs) belong locally to the space LtZH; 2
and then these functions have representatives such that ¢ — u..(,.) and
t |—> b( .) which are continuous from [0,7) to D'(R3) and coincides with
U (0,.) + [} Oiuee ds and bag(0,.) + bo(0,.) + f; dyboo ds. With this infor-
mat1on and proceeding as in [7] (see the proof of Theorem 3, page 21) we
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have that u(0,.) = up e and b (0,.) = by« and thus (U, be) is a solu-

tion of .

Next, We define

-V (pnkunk) -V (anbnk) +V- ((unk bnk>cnk)
+uy, (V ’ Fnk) + bnk ' (V ’ Gnk)’

and following the same computations as in [7] (see always the proof of Theo-
rem 3, page 22) we have that A, converges to A, in D'((0,T) x R3) where

002 bOOZ OO2 b002 002 boo2
Aw:_&(\u | ;\ I)+A(!u | ;I !)_v.<<\u2| N 2\ )Voo>

— V- (Poolloe) = V- (gaboo) + V- (1o - bog)Coo)
T Uy (V-Fy) + be - (V- Gu).

Moreover, recall by hypothesis of this theorem we have that there exist fi,,
a non-negative locally finite measure on (0,7) x R3 such that

W, |2 + b, |
2

) =a(Bl A Pl gy, 2 job,

2 b.. 12
-V <<|unk| + | nk’ )Vnk)

Oi(

2 2
-V (pnkunk) -V (anbnk) +V- ((unk ’ bnk>cnk)
+ Uy, - (V ’ Fnk) + bnk ' (V ’ Gnk) — Hny, -

Then by definition of A,, we can write A,, = |Vuy,,|*> 4+ |Vby,|* + pn,, and
thus we have A, = lim |V, |> + [Vb,, > + fin, -

ni—-+o0o

Let ® € D((0,T) x R?) be a non-negative function. As v®(Vu,, +Vb,,)
is weakly convergent to v®(Vuy, 4+ Vby) in L2L2, we have

// A®drds = lim // A, ®drds > limsup //(|Vunk|2 +|Vb,,, |*)® dx ds
N —>+00 ng——+00
> //(]Vuoo|2 + [Vbo)® da ds.

Thus, there exists a non-negative locally finite measure po, on (0,7) x R3
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such that A, = ([Vus|* + |Vbe|?) + tieo, and then we have

’uoo|2 + ’bOO|2
2

R e B\ N

Usl?  |bol?
o (et ety )

=V (Poollee) = V- (Gooboo) + V- (U - Boo)Coo)
U+ (V-Fa) 4 bay - (V- G) — froo,

Oh(

Asin [7], writing the energy control (17) with the functions (u,, , pn,, bn., @n,.)
and with a = 0, and moreover, taking the limsup when n; — 400 we have

w22 by (t 7)) 2 !
lim sup (/(|u k(2’ x)‘ + | k(2’ x)‘ )¢Rw%6 dx +/ /‘Vunk‘Z + IVbnkP ¢Rw%edw ds)
0

N —>+00

o0 ()] | [Bo.so ()]

S /( 9 —+ 9 )(bR’LU%E dx

3 t
-3 / / (Ot - U + b - ) (10, Drbi + D) da ds
i=1 70

3 t |uoo|2 ’boo|2
+ ; /(; /[( 2 + 2 )’Uoo,i + poouooﬂ] (w’y,eai¢R —+ ¢Raiw’y,e) dx dS
3 t
+ Z / /[(uoo Do) Coo,i + Gooboo i) (W, 0i0R + PRrOW, ) dx ds
i=1 Y0

t t
— Z (/ /Foo7i7juoo7j(wq,7€8¢¢3 + ¢prow.,.) dx ds —/ /Fm7i7j8iuoo,j ¢rdrds)
0 0

1<i,j<3

t t
— Z (/ / Goo,i,jboo,j (w%ﬁi@% + (bRw%E@iw%e) drds — / / Gooyid'aiboo’j ¢Rw'y,e dx dS)
0 0

1<i,j<3

t t
Now, recall that we have u,,, = ug,, + o, dsand b, =ug,, + [ Ob,, ds

and then, for all ¢ € (0,7) we have ’ghat (up, (t,.), by, (t,.)) convegge to
(us(t,.), bso(t,.)) in D'(R3). Moreover, as (uy,,(t,.),bn,(¢,.)) are bounded
in L7 (R?) we get that (u,,(t,.), by, (t,.)) converge to (Ux(t,.), ba(t,.)) in
L} _(R3). Thus, we can write

00 2 boot 2 n 3 g bn t’ ’
/(Iu G | Pooll 2) QbvaedelimsuP/(m (2P o f 2) JPRWy da.
2 2 7 nj—+00 2 2

On the other hand, as (Vu,,, Vb,, ) are weakly convergent to (Vu,, Vby)
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in L?L? , we have
Y

2
/ / |VuOO S, ) |Vuooés , )| Voo, . dr ds

glimsup/ /|Vunk|2 + Vb, |* prw, dx ds.
0

Nj—>+00

Thus, taking the limit when R — 0 and when ¢ — 0, for every ¢t € (0,7) we
get:

b)), +2 [ (19D (5, s

t
§||(u0700,b07oo)||%%w —/0 /(V|uoo|2 + V|buo|?) - Vw, dx ds

t |uoo|2 |boo|2 t
+ [( + W] - Vw, dzds + 2 Pooleo - Vi, dz ds
+2/ /qoo . vad:vdst// Uy - b |- Vw, dzds
// 0,0 (Oitloo ;) wwdxds—i—// 50,1, Uoo,i0 (Wy) - Vw, dz ds)
1<4,5<3

U/hy/ﬁ (wz] zcm] Ukyda7d3‘Fu/nb/p 00,i,j ooz 107)da:ds)
1<4,5<3

In this estimate we take now the limsup when ¢t — 0 and proceeding as in [7]
(see the proof of Theorem 3, page 24) we find that

1 (e, Do) ()2, = (00 b [, -

which implies strongly convergence of the solution to the initial data (since
we have weak convergence and convergence of the norms in a Hilbert space).
The proof is finished. o

Remark 3.1 We remark that non linear versions of this stability theorem
emerge from the same proof if we take w, = v, and ¢, = b,, in which case
we obtain Usy = Voo and € = bs. We consider two cases.

o if we suppose that (w,, b,) is bounded in L>((0,T), L2, ) and (Vu,, Vb,)
is bounded in L*((0,T), L}, ), the same proof give a solution on (0,T).
We will use this case in the end of the proof of Theorem 1}
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e if we do not suppose that (w,,b,) is bounded in Lm((O,T),LiV) and
(Vn, Vb,) is bounded in L*((0,T), L2, ), the same proof give a solution
on (0,Ty), where Ty < T using Theorem@ and Corollary

4 Global weak suitable solutions for 3D MHD
equations

4.1 Proof of Theorem

Initially, we proof the local in time existence of solutions.

4.1.1 Local existence

Let ¢ € D(R?) be a non-negative function such that ¢(x) = 1 for |z| <
1 and ¢(z) = 0 for x| > 2. For R > 0, we define the cut-off func-
tion ¢r(r) = ¢(§). Then, for the initial (ug,by) € L7 (R?) we define
(ug.r,bo.r) = (P(drup), P(¢rbyg)) € L*(R?) which are divergence-free vector
fields. Moreover, for the tensors F, G € L*((0,7), Liw) we define (Fg,Gr) =

(¢RF7 ¢RG> € LZ((()? T)’ LQ)
Then, by Proposition [A.I|there exist Ug, bre, DRe, R, sOlving

( Ouge = Aug, — ((upe x0) - VIug, + ((bre x0) - V)br — Vpr+ V - Fpg,
Oibr. = Abp, — ((ugc * 0c) - V)br + ((bre ¥ 0.) - V)ure — Vare + V - Gg,
V-ur,=0,V -bg.=0,

ug(0,:) =ugr, br0,-) = b r.

\

such that (ug., br.) € C([0,T), LA(R*)NL3([0,T), H'(R?)) and (pr.c, ¢r.) €
LA4((0,T), LY5(R3)) + L%((0,T), L*(R?)), for every 0 < T' < +o00, and satis-
fying the energy equality .

Now, we must study the convergence of the solution (Uge, bre, Dre; r.e)
when we let R — +oo and € — 0 and for this we will use the Theorem
which was proven in the setting of the advection-diffusion problem .
Thus, the first thing to do is to set (Vge, Cre) = (Ug %0, br*0,) in , and
then, we will prove that (vg,,cg,) are uniform bounded in L3((0, Tp), L§7/2)
for a time T > 0 small enough.
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For a time 0 < T < 400, by Lemma we have

) < [(Mup, Mby,)

|| (VR,G; CR;) || L3((0,Tp),L3

3 3
w3 /2 L ((OvTO)zL

by o)

<C,[[(ure, bre)l L3 (0,10),08, )-

3v/2

Then, by the Holder inequalities and by Lemma [2.3] we can write

[(ure, Pre) ||L3((0,T0),Lg’;):w2

) SC’VTOU12 ((1 + 4/ To)||(llR,e,bR,e)||L2((0,TO)7ng))

+ CyTol/u ((1 +V/To)[[(Vug,, VbR,e)HL?((O,TO),L?w ) .

At this point, remark that (ugc, bre, Pre, qr,) satisfy the assumptions of
Theorem and then we can apply Corollary Thus, for a time Ty > 0
such that

To 2
c, (1 + [ (w05, bo.g)ll7z +/ I(Fr, Gr)llzs, dS) To < 1,
0
we have the estimates

To
sup |[(uge, bre) ()72 < Oy (1 + [[(wo,r, bo.r)[17s +/ I(Fr, Gr)ll72_ds),
vy Y 0 Y

0<t<Tp

and
7b jb
| 19 br) s ds < O+ o bl + [ 1ErCalz, ds).
0 Y v 0 v
Moreover, we have that

[(o,7, bo.r)llzz, < Cyll(uo,bo)l[z, and [[(Fr, Gr)llzz, < [(F,G)llz, -

and thus, by the estimates above we find that (vg, cg) are uniform bounded
in L3((0,Ty), L§U3—y/2)'

Now, we are able to apply the Theorem For the sake of simplicity
let us denote (uo,nabo,n) = (uo,Rn7bU,Rn)7 (Fn7Gn> = (FRnaGRn>7 (Vnacn) =
(VRyens VBpen) a0d (Wn,by) = (Ug, e, PR, ). As (Ugn, boy) is strongly
convergent to (ug,by) in L3 , (F,,G,) is strongly convergent to (F,G) in
L*((0,Tp), L3, ), and moreover, as (vy, ¢,) is uniform bounded in L*((0, Ty), Ly,,_,),
by Theorem (4| there exist (u,b,v,c,p,q) and there exists an increasing se-
quence (ng)reny With values in N such that:
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* (uy,,,by,) converges *-weakly to (u, b) in L>((0, Ty), L3, ), (Vu,,, Vb, )
converges weakly to (Vu, Vb) in L*((0,Tp), L7, ).

® (Vi Cn,) converges weakly to (v,c) in L*((0,Tp), Ly, ). Moreover,
6/5

Pny, converges weakly to p in L3((0,Ty), Lu, ) + L*((0,Tp), Lz, ) and

5

similarly for g,, .

e (u,,,b,, ) converges strongly to (u,b) in LZ

([0, To) X Rg)

Moreover, (u,b, v, c,p, q) is a solution of the advection-diffusion problem
([ Qu=Au—(v-V)u+(c-V)b—-Vp+V_ F,
Ob=Ab—(v-V)b+(c-V)u—-Vq+ V-G,
V-u=0,V-b=0,

11(0, ) = Up, b(O, ) = bg.

\

and is such that :

e the map ¢t € [0,Ty) — (u(t),b(t)) is weakly continuous from [0, Tp) to
Li}w, and is strongly continuous at ¢ = 0

e there exists a non-negative locally finite measure p on (0, Tp) X R? such
that

lul® + |bJ?
2

[u? + [b[?
9
—V-(pu) = V- (¢gb) + V- ((u-b)c)

tu-(V-F)+b-(V-G) - p

o ) A )~ [Vuf’ ~ [Vb]? - V- (<@+W>v)

2 2

Finally we must check that v = u and ¢ = b. As we have v,, = 0, * (v, —
v) + 6, *v,and ¢, =0, *(c, — c) + b, *c then we get that (v,,,c,, ) are
strongly convergent to (u,b) in L{ ([0, Ty) x R?), hence we have v = u and

c = b. Thus, (u,b,p,q) is a solution of the (MHDG) equations on (0, Tp).

4.1.2 Global existence

Let A > 1. For n € N we consider the (MHDG) problem with the initial data
(W01, bosn) = (A"up(A"), bo(A™)) and with the tensors F,, = A\*"F(A*"- \"+)
and G, = A\*"G(A*"-,\") and then, by Section we have a solution a
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local in time (Qy, by, Pn, Gn) on the interval of time (0,7),), where the time
T,, > 0 is such that

N +o00 2
Cy | 1+ (800, bon) 72+ I(Fn, Ga)llzz_ ds ) Tw=1.
gl 2, ; 2,

Moreover, using the scaling of the (MHDG) equations, which is the same
well-know scaling of the Navier-Stokes equations, we can write

(Tn, b)) = (A", (A2, ™), Xby, (A2, ™)),
where (u,, b,,) is a solution of the (MHDG) equations on the interval of time

(0, A\*"T,,) and arising from the data (ug, by, F,G).

By Lemma 10 in [7] we have lim,, , AT = +o0 and then, for a time
T > 0 there exist ny € N such that for all n > np we have \>"T,, > T.
From the solution (u,,b,) on (0,7 given above, for all n > ny we define
the functions

(l:ln,f)n) = ()\nTun()\QnTt', )\nT,), )\nTbn(A2nTt~, )\nT.»,

which are solutions of the MHDG equations on (0, \=?"7T') with initial data

(W0, BO,nT) and forcing tensors F,,,., G, Since A™2"7T < T, ., we find

(1 Ny Do)l + [ N Gunly ds) AT <1
0

As before, sing corollary we find

)\_Q"TT
up | (G )OI, < Co14 Do)l + [ B, Gl do)
0

0<t<A—2nTT

and

A—2nrT _ ~ ~ A—2nrT
| 196, ds < O 0IGn Bon e+ [ IFurGanly, d)
0

By other hand, proceeding as in [7] (see the proof of Theorem 1, page 30)
we have the following estimates for the functions (1, by,):

A0 (w, by (X278, ) |2,

(L + [
b wa(x) dx

< / (@ (X778 2) 4 B (N7 ) )X S

<[ (@, ba) (¢, )12, -
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and

T
A”T'y_l)/ (Y, Vbo)(s, )7z, ds

(1 + Ja])

dzd
a1

//\Vunsx|2+|Vb (s,2)[})Anr™ 1(

AT2nTT _ -
<[ TRl ds
0 Y

For n > ny we have controlled uniformly (u,,b,) and on (Vu,, Vb,,) in
the interval of time (0,7"). Then, by Theorem and a diagonal argument we
find a global in time solution of the (MHDG) equations. Theorem || in now
proven. o

4.2 Solutions of the advection-diffusion problem with
initial data in L2w7.

Following essentially the same ideas of the proof of Theorem |1} this result is
easily adapted for following advection-diffusion problem:

Theorem 5 Within the hypothesis of Theorem let v,c be a time de-

pendent divergence free vector-field such that, for every T > 0, we have

v,ce L*((0,T), L, o ,)- Then, the advection-diffusion problem

([ Ou=Au— (v-V)u+ (c-V)b—Vp+ VT,
Ob=Ab— (v-V)b+ (c-V)u—Vq¢g+ V-G,
V-u=0,V-b=0,

U(O, ) = Up, b(ov ) = by,

(AD)

\

has a solution (u, b, p, q) which satisfies the statements of Thwrem

Proof. For the initial data (ug g, bor) = (P(¢ruo), P(¢rbg)) € L*(R?) and
for (Fr,Ggr) = (¢rF,¢rG) € L*((0,T),L?), proceeding as in the proof
of Proposition for every 0 < T < +oo we construct (uge,bgre) €
C((0,), L2(R¥)TAL2(0,T), H'(RY) and (e, qre) € LH(0, T), LI(RY) +
L2((0,T), L*(R?)) a solution of the approximated system

( Oure = Augr, — ((VRe*6.) - V)ug. + ((cgre*€) - V)bre — Vpre + V - Fpg,
Oibre = Abrc— ((Vgex€) - V)bre + ((crex€) - V)uge — Vqre + V - Gp,
\ V-ugr,=0,V-bp. =0,

ur(0,-) = ugr, br(0,) = bor,

\
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such that the functions (uge, bre, Pre, qre) verify all the assumptions of
Theorem [3]and we can apply the Corollary[3.1] Thus, by the estimates given
in Corollary and moreover, as we have

o0 bo.r)llzz. < Oy l(uo bo)llzs, . [(Frs G)luz, < I(E.G)lz
then we obtain the estimates:

sup || (ur.e br)l72
0<t<T 7

< (uo, bo)3y. + C(I(F,G)llz2omiz,)) ) e

Co(T+T V3| (Vreend)l2s,s )
73y /2

and

IV(ur,e br,) ||L2((O,T),L12M)

Oy (T4T ) (v cen )2,

< (w00 Do) 25, + Co(IF R Gr)llzomiz,)))

On the other hand, setting the functions (Vg,cre) = (Vg * 0., cg * 6.) the
we have

|(VRe Cre)llsqomys, ) < (Mo, Me)lsqory s, ) < Cyll(v, )|l wsqo.m),

W3y /2 W3y /2

and we have verified the assumptions of Theorem

We write (Wg ., bon) = (Wo.r,,bor,), (Fn,G,) = (Fr,,Grg,), (Va,cn) =
(VBpens VRyen) and (u,,b,) = (Ugr, e, broe,)- As (g, boy) is strongly
convergent to (up, bg) in wa, (F,,G,) is strongly convergent to (F,G) in
LQ((O,T),LfUW)7 and moreover, as (vp,c,) is bounded in L?’((O,T),I/f’UBWZ)7
by Theorem 4] there exist (u,b, V,C,p,q) and there exists an increasing
sequence (ny)geny with values in N such that:

e (uy,,,by,) converges *-weakly to (u, b) in L>((0,Ty), L2, ), (Vu,,, Vb, )

converges weakly to V(u,b) in L*((0,Tp), L7, ).

e (Vn,,cCp,) converges weakly to (V,C) in L3((0,Tp), L3 ), pn, con-

W3~ /2

verges weakly to p in L3((0, Tp), Lg,/;) + L*((0, Tp), L?UW) and similarly
5
for gy, .

e (u,,,b,,) converges strongly to (u,b) in LZ ([0, Tp) x R?),
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and moreover, (u,b, V,C,p,q) is a solution of the advection-diffusion prob-
lem

([ Qu=Au—(V-V)u+(c-V)b-Vp+ V- F,
Ob=Ab—(V-V)b+ (C-V)u—V¢g+ V-G,
V-u=0,V-b=0,

u(0, ) = uy, b(0,-) = by.

\
which verifies:

e the map ¢t € [0,Ty) — (u(t),b(t)) is weakly continuous from [0, Tp) to

Li}w, and is strongly continuous at ¢ = 0.

e there exists a non-negative locally finite measure u on (0,7) x R? such
that we have the local energy equality .

To finish this proof, proceeding as in the end of Section we have that
V=vand C=c. o

5 Discretely self-similar suitable solutions for
3D MHD equations

In this section we give a proof of Theorem We fix 1 < A < 4o00.

5.1 The linear problem.

Let 6 be a non-negative and radially decreasing function in D(R?) with

[0dx = 1; We define 6. ,(z) = ﬁ 0(=7). In order to study the mol-

lified problem

( Opu. = Aue — ((ue*0cy) - VIue + (be6c4) - V)be — Vp+ V- F,
Ob. = Ab, — ((uc % 6c¢) - V)be + ((be ¥ 04) - VIu, — Vg + V - G,
V-u=0,V-b, =0,

u(0,-) = uy, b(0,-) = by.

(MHD,)

\

we consider the linearized problem

((Ou=Au—((vxb.,) - VIu+ ((cxb,) - V)b—-Vp+V.F,
Ob=Ab— ((vx0.,)-V)b+ ((cxb.,) - V)u—Vqg+ V-G,
V-u=0,V-b=0,

u(0,-) = uy, b(0,-) = by.

(LMHD)
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Lemma 5.1 Let 1 < v < 2. Let uy, by be a \-DSS divergence-free vector
fields which belong to L7, (R?). Let F,G be a A\-DSS tensors wich satisfies
F,G € L},.((0,400), L2, ). Moreover, let v, ¢ be a \-DSS time-dependent di-

loc

vergence free vector-field such that for every T > 0, v, ¢ € L3((0,T), Ligm).

Then, the linearized advection-diffusion problem (LMHD) has a unique
solution (w, b, p,q) which satisfies all the conclusions of Theorem More-
over, the functions u, b are \-DSS vector fields.

Proof. As we have |v(t,.) * 0| < My,) then we can write

IV (8) * O, €(t) * Oco)llzs(om 22,y < GV €)llesomy g, -

W3y /2

Theorem [5] gives solution (u, b, p,¢) in the interval of time (0, 7). More-
over, as u * .4, b * 6., belong the space to L?L*°(K) for every compact
subset K of (0,7) x R?, we can use Corollaryto conclude that this solu-
tion (u, b, p, q) is unique.

We will prove that this solution is A-DSS. Let u(t,z) = su(s5, %) and

b(t,z) = 1b(s5,%). Remark that (v * 6., and c * 0.;) are A-DSS and then
we get (a,b,p,q), where p andg are always defined through the obvious
formula, is a solution of (LM HD,) on (0,7"). Thus, we have the identities
(q, b, B, q) = (u, b, p, q) from which we conclude that (u, b, p, q) are A-DSS.

<

5.2 The mollified Navier—Stokes equations.

Forv,c € L*((0,7), Li37/2> the terms u, b of the solution provided by Lemma
belongs to L*((0,7), Ly, ,) by interpolation. Then the map L : (v,c) —

u, b) where L.(v,c) = (u,b) is well defined from
Xr = {(v,0) € 13((0,T), L}

W3~ /2

) / bis A — DSS}
to Xr,. At this point, we introduce the following technical lemmas:

Lemma 5.2 For 4/3 <+, Xr, is a Banach space for the equivalent norms

(v, c) HL3((0,T),L3

w3 /5) and [|(v, C)HL3((0,T/,\2),XB(0,§))~

For a proof of this result see the Lemma 12 in [7].

Lemma 5.3 For 4/3 < v < 2, the mapping L. is continuous and compact
on Xr,.
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Proof. Let (v,,c,) be a bounded sequence in Xr., and let (u,,b,) =

L(Vn,c,). Remark that the sequence (v,,(t) * 6c¢, c,(t) * 0+) is bounded in
Xr., and then by Theorem [3|and Corollary [3.1] we have that the sequence
(wn, by,) is bounded in L>((0,T), Lz, ) and moreover (Vu,, Vb,) is bounded
in L2((0,T), L2,).

Thus, by Theorem [4] there exists Us, Doo;, Poos Goos Voo, Coo and an

increasing sequence (ny)reny with values in N such that we have:

e (u,,,b,, ) converges *-weakly to (U, bs ) in L>((0,7), Liﬂa (Vu,, ., Vb, )
converges weakly to (Vo Vby) in L?((0,T), L2, ).

o (v, %04, Cp, %0 ) converges weakly to (Vo, Cy) in L*((0,T), L3 ).

W3y /2
e The terms (p,, , gn, ) converge weakly t0 (pso, ¢oo) in L3((0,T), L?U/;) +

LA((0,7),L2,). 5

e (u,,,b,,) converges strongly to (Us, bs) in L ([0, T) xR3) : for every

loc
Ty € (0,7T) and every R > 0, we have

To
lim /| W, (5, 9)—Ueo (8, 9) |+ |bn, (5, 4)—boo(5,9)|* ds dy = 0.
y|<R

k——+o0 0

e and

([ Ouy = AUy, — (Voo - VU + (Coo - V)boo — Vpoo + V - I,
Otboo = Aby — (Voo - V)boo 4 (Coo - VU — Voo + V - G,
V-u,=0,V-by =0,

Up,00 = Up, bo,oo = by,
\

We will prove the compactness of L.. As before ,/w,v, is bounded in

LY3((0,T) x R3) by interpolation hence strong convergence of (u,,,b,,) in

loc

([0,T) x R?) implies the strong convergence of (u,,,b,,) in L}

loc

((0,7) x

Moreover, we have that (., bso) is still A-DSS (a property that is stable

under weak limits). With these information we obtain that u.,bs € X7,
and we have

lim / / Vi, (8, 9) — Voo (5, 9) [P ds dy = 0,
1
0,3)

ng—r—+00

33



which proves that L. is compact.

To finish this proof, we prove the continuity of L.. Let (v,,c,) be such
that (v, c,) is convergent to (v, €x) in X7,. Then we have Voo = Vo %6, 4,
Co = Coo ¥ 04, and Uy = L(Veo,Cx), and thus, the relatively compact
sequence (u,,b,) can have only one limit point. In conclusion, it must be
convergent and this proves that L. is continuous. o

Lemma 5.4 Let 4/3 < v < 2. If p € [0,1] and (u, b) solves (u,b) =
puLc(u, b) then
(e B)llx7., < Cug iy

where the constant Cy, 715 depends only on uy, F, v, T and X (but not on
[ mor on €).

Proof. We let (u,b) = (puu, ub), so that

(9t =At— ((uxb,) V)u+ ((bxb.,) V)b—Vp+V-F,
b =Ab— ((uxf,) -V)b+((bxb.,) V)a—Vq¢+V-G,

V-u=0,V-b=0,
(0, ) = ug, b(0,-) = by.

\

Multiplying by p, we find that

([ Ou=Au— ((ux6.,)-V)u+ ((bx6b.) V)b—V(up)+V-puF,
Ob=Ab— ((uxb.,)-V)b+ ((bx0.,) V)u—V(ug) + V- uG,
V-u=0,V-b=0,

\ u(0,-) = puy, b(0,-) = uby.

Corollary allows us to take Ty € (0,7") such that

2

To
&, (14 Nunboliy, + [ IE.G)E:, ds) Tas1
Y 0 y

which implies

2

Ty
¢, (14 lutwnbollte, + [ G ds) Tos1
0

Then we have the controls

To
sup | (w b)), < 01+ el by +4 [ IE©)IE, do

0<t<Ty
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and
To

To
| IV @b ds < 00 2ol +if [ IEE)IE, )

In particular, by interpolation

To
/0 Jw by, ds

W3~ /2

is bounded by a constant Cy, - and we can go back from 7j to 7', using
the self-similarity property. o

Lemma 5.5 Let 4/3 < v < 2. There is at least one solution (u., b.) of the
problem (u., b)) = Lc(u, b).

Proof. The uniform a priori estimates for the fixed points of uL. for
0 < pu <1 given by Lemma |5.4f and Lemma |5.3| permit to apply Leray—
Schauder principle and Schaefer theorem. o

5.3 Proof of Theorem .

We consider (u, b,) solutions of (u., b.) = L.(u,, b,) given by Lemma
By Lemma and Lemma [2.2| we have u, * 0, b, * 0., are bounded
in L3((0,7), L?UWQ). Theorem (3| and Corollary allows us to conclude
that u.,b. are bounded in L>((0,7), L}, ) and Vu,, Vb, are bounded in
L((0,T),L%).
Theorem [4| gives u, b, p, ¢, v and ¢ and a decreasing sequence (€ )xen
converging to 0, such that

e (u,b,,) converges *-weakly to (u,b) in L>*((0,7), LfUW), (Vu,,, Vb,,)
converges weakly to (Vu, Vu) in L?((0,7T), Liw)

(ue, * 0., 4, b, * 0., ;) converges weakly to (v,c) in L*((0,T), L3

w3,y/2 )

the associated pressures p., and ¢, converge weakly to p and ¢ in

L3((0,T), Lifg, ) + L*((0,T), L2, )

=

e (u,,b.,) converges strongly to (u,b) in L2 ([0,7T) x R?)

e and

([ u=Au— (v-V)u+(c-V)b—-Vp+ VT,
db=Ab - (v-V)b+ (c-VIu-Vg+V-G,
V-u=0,V-b=0,

uy = ug, by = by,
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The proof is finished if v = u and ¢ = b. As we have u,, * 0., , = (u., —
x60., s +ux6. . We just need to remark that u * 6., converges strongl

k> k> J ; g gly

in L?OC((O T) x R?) as € goes to 0 (we use dominated convergence as it is

bounded by M, and converges strongly to u in L _(R?) for each fixed ¢ )
and |(u —u.) * 04| < My_y.. In a similar way we prove ¢ = b. o

A Approximated system

Let 0 € D(Rg) be a non-negative, radial and radially decreasing function
such that [o, 0(z)dx = 1. For e > 0 we let 0.(x) = 50(2).

Proposition A.1 Let uy € L*(R?), by € L*(R3) be divergence free vector
fields. Let F = (F; j)1<ij<2 and G = (G, )1<ij<2 be tensor forces such that
F,G e L*((0,T),L?), for all T < T,.

Then there exists a unique solution (ue, bz, pe, q:) of the following approz-
imated system

([ Ou=Au—[(ux0.) -V]u+[(bx0.)-V]b—Vp+ VT,
0b=Ab—[(u.%0.)-V]b+ [(bx0.) - Vlu—Vqg+ V-G,
V.-u=0,V-b=0,

w(0,) = ug, b(0,-) = by,

(MHDG,)

\

on [0, Ty) such that:

o u., b. e L=(0,T), L2A(R»NL2([0,T), H'(R?)), pe, q- € L2((0,T), H ")+
L3((0,T), L%, for all0 < T < Ty

e the pressure p. and the term q. are related to u., b., F and G by

Z RiRj((us,i * 0&)”5,]‘ - (bs,z' * Qs)bs,j - Fi,j)7

1<i,j<3
and
= > RR([(uei *0)bey — (bey # 0 )ue] — Giy),
1<i,j<3
where R; = —A< denote always the Riesz transforms. In particular,

Pe, G- € L4((0 ) L8%) + L2((0,T), L?).
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o The functions (u., b., F,G) verify the following global energy equality:

’U,52+ b€2 u€2+ b€2
o, (WO AT g v

-V ((% + %)(ug * 0:) +p€us> (16)

+ V- (- b)(be % 0.) + g.b.)
+u. - (V-F)+b.-(V-G).

and

lue (B)I[72 + 11b-(D) 122 + 2/ (IVue(s)lZ2 + 1 Vbe(5)]72)ds
=[lu-(a)||Z2 + [[be(a)][7:

+ > //F”auij dxds+//GU@baj dz ds),

1<4,5<3

which implies in particular

t
lue (8)1172 + 116 (1)]1Z2 +/0 (IVue(s)l[Z2 + [[Vbe(s) I Z2)ds
< lluollZz + lbollz2 + c(IFlIZz 12 + G Zz12)-

Proof. We consider 0 < T' < Ty < T, and the space Er = C([0,T], L*(R?))N
L2((0, T) ' (R?)) doted with the norm |-l = || - | zzes2 + |- 255 We will
construct simultaneously u. and b.. For this we will consider the space
Er x Ep with the norm ||(u., b.)||l7 = [Juc||r + ||b:]|7-

We use the Leray projection operator in order to express the problem
(MHDG,) in terms of a fixed point problem. We let

t
a = e (vy, co) + / eIAP(V . F,V - G)(s, -)ds
0

and
B((u7b)’ (V7 C)) = (Bl<<u7b) ) (V7 C)>7 BQ((uvb)ﬂ (V7C)) )’
where
By((u,b), /Oet IAP([(u % 0.) - V)v — [(v + 0] - V]e)(s, )ds,
Bsy((u,b), / E=92P([(u % 6.) - V]c — [(bx*6.) - V]V)(s, -)ds.
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Then
. 2
(e, b, pese) € B x (12((0,7), HY) + L2(0,7), 1))

is a solution of (M HDG.,) if and only if (u.,b.) is a fixed point for the
application (u,b) — a+ B((u,b), (u,b)) and

De = Z RiRj((ua,i * ea)ua,j - (ba,i * es)bs,j - Fi,j)a

1<i,5<3

and

4: = Z RiR;([(uei* 0-)be j — (be j x O )uci] — Giy).

1<i,5<3

We will use the Piccard’s point fixed theorem. In order to study the linear
terms, recall the following estimates, for a proof see [15|, Theorem 12.2, page
352.

Lemma A.1 Let f € L*(R?) and g € L?H_'. We have:
1) [l fllr < ell £l e
2) |

By this lemma we have

Jy e g(s. s < e+ V) gl 2

le" (uo, bo)llz < e([luollz2 + [[bollz2), (17)

and

t
/ TIAP(V - F,V - G)(s,-)ds
0

T

IN

e(1+ V) (IB(Y Bz + IB(V - G )
< 1+ VD) (IFliziz + G2z (18)

Now, to study the bilinear terms recall the following estimate given in [15]
(Theorem 12.2; page 352):

Lemma A.2 Let u,b € Er. We have

< VT2 lul|r |1
T

/0 EIAB(((w 6.) - V)b)(s, -)ds
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Applying this lemma to each bilinear term in the equation (17) we get
B((u,b), (v,¢)) < eVTe™*”||(u,b) [ ||(v, )1 (19)

Once we have inequalities , and , for a time 0 < Ty < T}
such that

- o ced )
= min , ;
° " ([[(uo, bo) 2 + 1E N2 013,22

by the Picard’s contraction principle, we obtain (u., b, p., g-) a local solution
of (MHD,), where u.,b. € Ep and p.,q. € L*((0,T), H™') + L*((0,T), L?).
We can verify that this solution is unique.

To prove that p. € L*((0,T), L5/°) 4+ L?((0,T), L?), recall that

Z RiRj((u&i * Qa)ua,j - (ba,i * es)ba,j - Fi,j)a

1<i,j<3

Asu.,b. € Er = LY°L2 N L?H; then we have u, x 0.,b, x 0. € Er and
thus we get u.,u. * 6., b.,b. * 6. € L°L2 N L?LS. By interpolation we get
u. *0.,b.*x0. € L}L3 and moreover, as (u.,b.) € L°L? then by the Holder
inequalities, (u. *6.) @ u., (b: *x0.) @b, € Lng/ ® Thus, by the continuity of
the Riesz transforms R; on the Lebesgue spaces LF(R?) for 1 < p < +oo we
have 33, ;g RiR((uei %0 ue j — (bei % 02)be ;) € L*((0,T), LY%). Similarly
we treat g..

Now, we prove that (u.,b.,p., q.) is a global solution. We define the
maximal existence time of the solution u by

Tyax =sup{l0 < T <T, :u€kEr}

If Thiax < Too we take 0 < T < Thypax < Ty < Tw, then (u,b) is a solution
of (GMHD,) on [0,T] and (u,b) is a solution on [T, 7T + 6], where

ce?
0 = min <T - T, > ,
' (1a(T), b(T) 22 + 1 F'[| 2((r/1),22))*

which implies that limg. ;- |(ue(T), bo(T))||zz = 400, however, we will
see that it is not possible.

As ((be6.)- V)b )u, = V- (b.® (b, %6.))u. belongs to L2((0,T), H™1),

39



and the same for the other non linear terms, we can write

SOl = 200me(t) wl0) o1

= =2Vu. ()} +2 Y / bej * 02) 0, jdx

1<4,5<3
+2 Z /Fuf)usj dz,
1<,5<3
and
d 2
g P=Ollz2 = 2(0b:(8), be(8)) -1
= —2||b.(¢ ot 2 Z /ugZ e % 0:)0ib_ jdx
1<%,5<3
+2 Z /G”(?usj dzx.
1<4,5<3

where we have used the fact that

[ttty b bode= [ 3 (@ w0050 do

1<4,5<3

1 2
- —5/<ue*e>-v<|be| ) da

_ _% /v - (w. # 0.)[b.2dz = 0.

Then, an integration by parts gives

Z /uEZ e ¥ 0:)0ib, jdr = — Z /Ez e ¥ 0:)Oiue jdz,

1<4,5<3 1<4,5<3
so we have
d
E(Ilua(t)lliﬁ||ba(t)||iz) = =2([Vu.()]17: + [Vb(t)]]72)
+2 ) ( / F; ;j0u; dxds + / G, ;0ib; drds).
1<i,5<3

By integrating on the time interval [0,7] we obtain the control which
implies by Gronwall inequality that ||(ue, b:)(T))||zz does not converges to
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400 when T go to Tyrax if Tyax < T, hence the solution is defined on
[0,7). Finally, remark that we can write

V- ((b:-u.)(b:x0.)) =V (b.-u.) - (b.*6,)
= ((bz-: * 65) : V>b€ s Ug + ((be * 95) : V)us) . be

so that
2 2 2
50 A - - v (B ) o)

2
+ V- ((u.-b.)(b.*x6.)) — ((b.*6.)-V)-u.)b. +u. - (V-TF),

similarly we find

b.|? b.|? b.|?
at(l 2’ ):A(’ 2’ )_|Vba|2_v(| ’ (ua*ga)_l'%ba)
+ ((bex0.)-V)-u.)b. +b. - (V-G).
By adding these equations we obtain the energy equality . o

We can observe that our approximated system need to consider an non-
zero term ¢. even if G = 0. As we have seen it is not the case when we let €
tends to 0 and then we obtain the (MHDG) system.
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