Lagrangian Particle Image Velocimetry - Archive ouverte HAL Access content directly
Conference Papers Year : 2019

Lagrangian Particle Image Velocimetry


The existing methods for reconstructing the 3D Eulerian velocity fields generally require two subsequent optimization procedures. For example, voxel-based method, such as Tomographic PIV (Tomo-PIV), first reconstructs the 3D voxel intensity followed by motion analysis on the voxel field. Another group of methods interpolates the Lagrangian data field obtained by Lagrangian particle tracking (LPT) schemes (e.g. Shake- The-Box (STB)) to Eulerian fixed grids. In this paper, we propose a novel method for volumetric velocity reconstruction exploring the locality of 3D object space. Under this formulation, the velocity of local patch is sought to match the projection of the particles within the local patch in image space to the image recorded by camera. The core algorithm to solve the matching problem is an instance-based estimation scheme that can overcome the difficulties of optimization originated from the nonlinear relationship between the image intensity residual and the volumetric velocity. The proposed method, labeled as Lagrangian Particle Image Velocimetry (LaPIV), is quantitatively evaluated with synthetic particle image data. The promising results indicate the potential application of LaPIV to a large variety of volumetric velocity reconstruction problems.
Fichier principal
Vignette du fichier
yang_etal_ISPIV2019.pdf (2.28 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02610088 , version 2 (23-10-2019)
hal-02610088 , version 1 (16-05-2020)


  • HAL Id : hal-02610088 , version 2


Yin Yang, Dominique Heitz, Etienne Mémin. Lagrangian Particle Image Velocimetry. ISPIV2019 - 13th International Symposium on Particle Image Velocimetry, Jul 2019, Munich, Germany. pp.1-9. ⟨hal-02610088v2⟩
149 View
142 Download


Gmail Facebook Twitter LinkedIn More