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Abstract
The existing methods for reconstructing the 3D Eulerian velocity fields generally require two subsequent
optimization procedures. For example, voxel-based method, such as Tomographic PIV (Tomo-PIV), first
reconstructs the 3D voxel intensity followed by motion analysis on the voxel field. Another group of methods
interpolates the Lagrangian data field obtained by Lagrangian particle tracking (LPT) schemes (e.g. Shake-
The-Box (STB)) to Eulerian fixed grids. In this paper, we propose a novel method for volumetric velocity
reconstruction exploring the locality of 3D object space. Under this formulation, the velocity of local patch
is sought to match the projection of the particles within the local patch in image space to the image recorded
by camera. The core algorithm to solve the matching problem is an instance-based estimation scheme that
can overcome the difficulties of optimization originated from the nonlinear relationship between the image
intensity residual and the volumetric velocity. The proposed method, labeled as Lagrangian Particle Image
Velocimetry (LaPIV), is quantitatively evaluated with synthetic particle image data. The promising results
indicate the potential application of LaPIV to a large variety of volumetric velocity reconstruction problems.

1 Introduction
Accurate and efficient reconstruction of volumetric Eulerian velocity field of fluid flow from particle images
is an important means to study the turbulence. To obtain a higher spatial resolution, higher seeding densities
of particle must be dealt with. For many years, the dominant approach for volumetric reconstruction is
Tomo-PIV (Elsinga et al., 2006) that is able to deal with particle images of density up to 0.05 particles
in pixel (ppp). In this approach, first the distribution of 3D voxel intensity discretized from the original
particle fields is reconstructed, then the velocity is obtained through the cross-correlation analysis over
interrogation volumes (IV). In 2D planar PIV, the cross-correlation algorithm is proved to be robust as
well as efficient. This motion analysis strategy contributes to the robustness of Tomo-PIV since the cross-
correlation algorithm is a direct extension from 2D pixel space to 3D voxel space. However, for volumetric
reconstruction, the 3D cross-correlation algorithm is computational demanding. In addition, the quality of
voxel intensity reconstruction is likely to be tempered by the presence of ghost particles. Ghost particles
appear naturally for particle image of high ppp due to the ambiguities associated with the triangulation
process. Consequently, the velocity result is less convincing.

Another way of reconstructing 3D Eulerian velocity is first to obtain particle’s velocity through La-
grangian particle tracking (LPT), followed by some interpolation algorithm that interpolates the Lagrangian
velocity field to Eulerian grid in an optimal manner. Current approaches include FlowFit (Gesemann et al.,
2016) and VIC+ (Schneiders and Scarano, 2016). These approaches have gained growing interests since the
introduction of the so called Shake-The-Box (STB) method, a 4DPTV scheme proposed by Schanz et al.
(2016). STB is able to reconstruct flow scenes with high particle seeding density compared to standard
3DPTV where particle positions are sought only through triangulation. STB method, rooted in Iterative Par-
ticle Reconstruction (IPR) approach (Wieneke, 2012), features an active image pattern matching scheme.
This scheme searches for the best particle’s parameters (position, intensity) iteratively so that the resulting
projected image through an explicit image model is most similar to the particle image captured by cameras.
Besides, STB introduces a predicting phase for the particle position. Such usage of temporal information
reduces the difficulties of the particle tracking procedure and can produce nearly ghost-free particle fields.



After the Lagrangian flow field is obtained, FlowFit or VIC+ post-processing procedures can be used
to provide Eulerian vector fields. The optimal interpolation processes of FlowFit and VIC+ minimize the
difference between the reconstructed field and the velocity and acceleration measurements, respectively.
Furthermore, FlowFit introduces additional physical constraints into its cost function. Whereas VIC+ em-
ployes the velocity-vorticity formulation and adoptes an adjoint approach to compute the gradient of the
cost function.

More recently, Lasinger et al. (2018) proposed a method that jointly reconstruct individual particles
as well as volumetric velocity fields directly from particle images. This approach alternates between a
particle triangulation procedure (using simple triangulation or IPR) and an optimization procedure that finds
the optimal parameter field (particle position, intensity and Eulerian velocity) explaining the variations of
particle fields between two consecutive snapshots. This method is a direct 3D extension of variational flow
estimation.

In the same vein, we propose in the present study a direct estimation of the Eulerian velocities from
Lagrangian particle positions. However, the novelty of our method lies in the following points: First, we
measured the data discrepancy term on local patches rather than for individual particle and we also assumed
a local homogeneity of the velocity; Then, we solved the optimization problem using a strategy inspired
from Ensemble-based Data Assimilation approach (EnDA) (Yang et al., 2015). This strategy avoids the
calculation of gradient of the cost function with respect to the original control variables. The efficiency and
accuracy of this method supersedes STB as shown in Yang et al. (2018) in the context of particle tracking;
Finally, we employed a transport equation that propagated the particles to their positions at next time level
according to a given velocity candidate on the fixed grid. This particle transport equation played a central
role in the formulation because it related the particle position to the Eulerian velocities.

Note that our method can be applied to either time-resolved sequential data or double-frame data. In
either case, the triangulation or IPR technique is still needed to provide the prior particle field to initialize
the velocity estimation procedure. We evaluate in this paper a double-frame strategy where the IPR was
required to build the initial particle field for the first frame as well as to improve this particle field along with
the velocity estimation procedure.

2 Methods
In the following, we formulate the Eulerian velocity estimation task as an optimization problem and propose
relevant solution methods. In principe, at frame k− 1, we search for the 3D Eulerian velocity field within
the flow domain that propagates the particles with known coordinates to the next frame k by minimizing
the image discrepancy between the one captured by camera and the one active-generated by OTF. We use
sum-square-difference (SSD) measuring the image discrepancy. This strategy translates into following cost
function:

J(u) = ∑
i
||Ii

rec,k− Ii
proj,k(u)||2, (1)

where i is the camera index and Irec is the image recorded by camera. Iproj is an active-projection image
model and a function of u. This image model can be developed into a superposition of total Q particles’
projection respectively:

Ii
proj,k =

Q

∑
p

Ii
part,k =

Q

∑
p

OTFi{Mi[Xk
p]}, (2)

where the OTF is modeled as Gaussian blob (Wieneke, 2012; Schanz et al., 2012), M is the mapping function
linking world coordinate Xp to camera coordinate xi

p. The particle position Xk
p at frame k is related to the

velocity uk−1 through a transport model Xk
p = Tk(uk−1,Xk−1

p ). This transport model computes the pathline
of particle p according to the particle velocity vk−1

p that depends on the space and time. Still, we must
establish the operator Lp such that vp = Lp(u). Lasinger et al. (2018) used a trilinear interpolation scheme
to determine the particle velocity vp from u on nearby grids. We employ a different strategy inspired by the
idea of Lucas-Kanade algorithm and we elaborate this strategy in the next section.



2.1 Local approach
Our approach follows from an discretization of the whole domain of interest into small 3D local patches
similar to the interrogation volumes used in Tomo-PIV. Suppose q particles are bounded in a local patch l,
the cost function at frame k reads,

Jloc(ul) = ∑
i
||Ii

rec,k−
q

∑
p=0

I i
part,k[Tk,p(ul)]||2. (3)

This is a general formulation because it does not show how the particle velocity is computed. We also
assume that each patch has independent but homogeneous velocity. This suggests all particles within the
patch should have the same velocity. The homogeneous assumption is not required as we can indeed solve
above cost function with any interpolation scheme. Also this approach seems less accurate compared to
the interpolation. However we adopt this strategy because first, for any realistic flow analysis problem, the
resolution of the reconstructed velocity field is limited by the particle density. For example, we have found
that our approach is relatively more robust under noise with an adequate size of local patch containing 5 to
10 particles. This empirical parameter coincides with the number of particles contained in an IV on average
used in Tomo-PIV. Additional overlapping window techniques can be used to increase the spatial resolution.
Second, the ensemble technique used to solve the optimization problem performs better with smaller control
space. E.g. for a single particle, the size of control vector of our strategy is eight times smaller compared to
the size of control vector if adopting the trilinear interpolation.

2.2 Adding regularizations
One drawback of local approach is that the velocity can not be inferred when no particle is found in the
local patch. This can happen when the particle density is not high enough or the particle distribution is not
homogeneous enough. One strategy to handle this issue, without the loss of resolution on the reconstructed
velocity field, is to consider some regularization on the velocity field. The common choices for the regular-
ization terms include a term penalizing the gradient of velocity component as well as a term penalizing the
divergence for incompressible flows.

After optimizing ul for each patch l in Eq.(3), we obtain uL (L denotes the local analysis). We formulate
another cost function in terms of uG (G denotes global analysis) taking account of the regularizations on
velocity fields:

Jtot(uG) = ||uG−uL||2 +
∫

Ω

(α
3

∑
j=1
||∇uG

j ||2 +β||∇ ·uG||)∂ω (4)

where α and β control the relative weight of corresponding regularization term compared to the first term.

2.3 Solution
The system (3) constitutes a non-linear optimization problem that can be solved using the iterative Gauss-
Newton algorithm. At iteration m, we can linearize the image model around an estimation of the velocity
field ûl

m−1 (either deduced from previous iteration or u0 = uinit to initialize the first iteration m = 0). After
linearization, we have the following linearized cost function (5):

J(δul
m) = ∑

i
||Ii

res,k−
q

∑
p=0

∂XI i
part,k∂uTk,pδul

m||2, (5)

where ∂zF denotes the tangent linear model of non-linear model F with respect to its variable z linearized
around the prior zm. We also note that, Ii

res,k = Ii
rec,k,Ul

−∑
q
p=0 Ii

part,k[Tk(X̂k−1,p,ul
m)], is the difference, between

the recorded image and the active-projected image of particles driven by the prior velocity um. Consequently,
we search for the increment δul

m at each iteration. Inspired by the work of Yang et al. (2018), in which
the authors proposed to solve the Lagrangian particle field estimation problem within the framework of
EnDA (Yang et al., 2015), we also employ the ensemble technique to solve the optimization problem. The



basic idea is to employ an ensemble of velocity candidates that produce an ensemble of particle image
patterns through the transport equation, the mapping function and the OTF. Then the optimal velocity can be
sought, in form of a linear combination of all candidates, by minimizing a modified empirical cost function.
Eventually the original non-linear optimization problem is transformed into a linear one that is easy to solve.

The system (4) is relatively easy to solve since the discretization of gradient or divergence operators on
Eulerian grids constitutes eventually a linear system. We use conjugate-gradient algorithm to solve for the
final velocity. The details of the whole approach is listed in section 2.5.

2.4 Discussion
In Tomo-PIV, we assign Ek−1(XV ) as local 3D voxel intensity field, then the task is to find u minimizing
∑XV
||Ek(W (XV ,u))−Ek−1(XV )||2 where Ek is the 3D voxel intensity field at k and W is a 3D warp mapping

the voxel coordinates XV to a new set. Tomo-PIV solves this problem by the cross-correlation technique. It
is clear that our approach intends to solve a similar template matching task as TomoPIV without building
voxel intensity field. Our solution method uses a random sampling strategy on control variables yielding
samples of projected image patches. This strategy is more efficient than the cross-correlation technique
regarding computation in 3D space.

It is also interesting to discuss the relationship between our approach and the scene flow estimation since
the scene flow can be seen as the extension of 2D optical flow to 3D. In our approach, we search for the
velocity vector centered on a local 3D patch that transports the particles within the patch and produces the
most accurate particle distribution for the next frame. The accuracy is thus examined on 2D image space.
This can also be interpreted as we modulate the 3D velocity vector so that its projection on 2D image best
fits the corresponding image flow vector in the sense of optical flow. Note that we can not compare the 3D
velocity vector directly to the 2D image velocity vector calculated by an optical flow algorithm because the
2D optical flow in corresponding patch is a superposition of the whole 3D vector along the line of sight.

2.5 Summary of algorithm
Here we briefly state the algorithm of estimating velocity fields using an ensemble:

1. We need to do triangulation or IPR to obtain initial particles’ positions X̂k−1,p. The initial velocity
field uinit is also needed and can be set to zeros.

2. First we need to decompose the domain into small local patches. For different particle densities, we
make sure that each local patch contains 5 to 10 particles in average. This give us directly the first
reconstruction resolution depending on the particle density.

3. We perturb the velocity u using some errors statistics,

u j = uinit +ξ j,

yielding the ensemble Eu ∈ Rn×N .

4. We start iterating from m = 0:

5. For the lth patch, we need to determine the q particles located in the patch at time index k−1.

6. Still in lth patch, we try to minimize the linearized cost function (5).

7. Assuming δul
m = Auγ = 1√

N−1
(Eu − Ēu)γ, a linear combination of the column space of ensemble

anomaly matrix Au.

8. Denoting Ii, j
sample,k,p =

1√
N−1 ∑

q
p=0

(
I i

part,k{Tk,p[X̂k−1,p,E j
u]}− I i

part,k{Tk,p[X̂k−1,p, Ēu]}
)

, where j is the
sample number index. This term can be computed efficiently because for each particle, it has N
possible locations at time k. The term I i

part,k{Tk,p[X̂k−1,p, Ēu]} is common to all.



9. Finally, we have the following linear system to solve:

∑
i

q

∑
p=0

(Ii
sample,k,p)

T Ii
sample,k,pγ = ∑

i

q

∑
p=0

(Ii
sample,k,p)

T Ii
res,k

where
Ii
sample,k,p = [Ii,0

sample,k,p, . . . , I
i, j
sample,k,p, . . . , I

i,N
sample,k,p]

has one sample j per column.

10. Recover ûl
m = Auγ̂.

11. Solve (4) for uG and set ûl
m = ûG.

12. Do reduced IPR on image residual at frame k−1 to produce more particles.

13. Update Ii
res,k using ûl

m and iterate back to step 5 with m = m+1 and ul
m+1 = ûl

m.

To summarize, our Lagrangian PIV approach is a hybrid approach that reconstructs the 3D Eulerian
velocity field immediately through tracking particles.

3 Results of Re3900 wake flow behind a cylinder
For the synthetic particle image setup, we followed the same procedures as in Yang et al. (2018). The
synthetic particle images were constructed by projecting virtual particles onto 4 virtual cameras. Those
particles were transported by velocity fields obtained with Large Eddy Simulation (Parnaudeau et al., 2008)
characterizing the turbulent wake-flow behind a cylinder at Reynolds number equal to 3900. We used a
uniform Gaussian form to model the OTF that led to an averaged particle diameter of 2 px.

We chose one snapshot as the source of velocity field and sampled two datasets at different locations
with different size of domain and different size of images. We started with a small test case with a volume
size of 1.5D×1.5D×D/3, where D is the cylinder diameter. The image size was 256×256 pixels for this
case. Then we proceed to a full scale case extending over a volume of size 6D×1.9D×D with image sizes
of 1280× 800 pixels. For both cases, the volume was located such that the inlet face was 3D behind the
center of the cylinder, i.e. in the transitional region of the wake flow where large three-dimensional motions
and high shear take place (Chandramouli et al., 2018). The simulated ppp was at the level of 0.01, and the
cameras were pre-calibrated accordingly. The time separation was set to a level so that the mean particle
displacement between two consecutive snapshots was around 1 pixel. As discussed before, a prior guess on
the velocity field was needed to initialize our approach. Here we initialized the velocity field as zero field
to assess the robustness of our method. We also employed a window over-lap of 75%. The regularization
coefficient α and β are set as 1 for all cases.

In the following, we assessed the quality of the reconstructed flow quantities by comparing it to the
reference. Note that the source quantity was first interpolated to the reconstructed grid to provide a suitable
ground truth.

3.1 A small test case
Figure 1 shows the reconstructed streamwise velocity field, the reference streamwise velocity field as well
as the error distribution in the center plane Z = D/6. The reconstructed velocity field was in a good corre-
spondence with the LES reference. We want to emphasize that although initialized by zero velocities, our
method was able to converge. The final average analysis velocity error was only 2% of the initial error. In
figure 2, we also plot the reconstructed normal vorticity component, the reference normal vorticity com-
ponent as well as the error distribution in center plane Z = D/6. Based on both the streamwise velocity
error plot and the vorticity error plot, we observed that the locations that had large vorticity were likely to
have relatively large errors. This was expected because, at locations with large vorticity, our assumption
of the homogeneity on the velocity in local patch was not valid anymore. A direct solution is to add more
particles to the flow so that we can work on finer local path where the homogeneity assumption can be jus-
tified. However, high ppp introduces much more ambiguities for triangulation which in turn deteriorate the
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Figure 1: The streamwise velocity field of center plane at Z = D/6: ground truth (Left), reconstructed
(Middle) and their absolute difference (Right).
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Figure 2: The vorticity field of center plane at Z = D/6: ground truth (Left), reconstructed (Right) and their
absolute difference (Right).

accuracy of the estimated velocity field as well. There is no clear solution to this problem, yet we argue that
one possible solution is to consider Computational Fluid Dynamic models since they can provide finer and
physical-induced perturbations to our ensemble-based data assimilation scheme.

3.2 A full scale test case
In this case the spatial resolution of the reference velocity was largely increased (nearly 4 times finer in x
direction and 3 times finer in z direction). As a result, it is more difficult to obtain accurate estimation on
finer resolution bounded by the particle density that stays the same (ppp=0.1) as in the previous small case.
This is a direct consequence of our algorithm that requires each local patch must contain a minimum number
of particles.

We compared the performance of our method against VIC+ and TomoPIV implemented in Davis10.
Note that this version of VIC+ in Davis10 is labeled as VIC#, with additional constraints and multigrid
approximations according to Jeon et al. (2018). To provide a fair comparison, we fed both the synthetic data
sets as well as the mapping function to Davis 10. Note that we provided time-resolved sequential data for
VIC+ method since it relies on the particle field reconstructed by the STB method. We also chose the recon-
structed velocity field at the converged phase of STB when almost all particles were tracked successfully.

Figure 3 shows the results of isosurfaces of velocity magnitude obtained by our method (3b) compared
to the reference (3a) as well as VIC+ (3c) and TomoPIV (3d). Among the three methods, TomoPIV diverged
the most from the reference and it failed to provide a good estimation at regions (3D < x < 4D,0 < y < 1D)
where the velocity gradient is high. Both VIC+ and our method yield results that were in good accordance
with the reference. Our method provided more local coherent structures compared to VIC+, which as a
global method, tended to smooth out those small scale variations.

The isosurfaces of low and high vorticity magnitude of different approaches are visualized in figure
4. Both VIC+ and our method could recover the regions with strong vorticity. VIC+ filtered out the high
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Figure 3: Isosurfaces of velocity magnitude |u|/Uc = 0.6 (silver) and |u|/Uc = 1.1 (red) of reference field
(a) and reconstructed field using LaPIV (b), VIC+ (c) and TomoPIV (d) in Davis10.

frequency variations that were nevertheless maintained with our method. TomoPIV failed to reconstruct the
small scale vortex with high vorticity. At regions with low vorticity, only our method is able to provide a
good estimation. Both VIC+ and TomoPIV tended to overestimate the vorticity in regions where the rotation
was trivial. This reflected that these two methods were not sensitive to small scale variations. Our method
provided a visually more consistent vorticity field compared with the reference. This is because our method,
acting as a local-based method, captured small scale variations compared to VIC+. At the meantime, our
method, concentrating on a particle-based image matching scheme, avoided the averaging effect introduced
in TomoPIV.

4 Conclusion
In this work, we proposed a new method to infer the Eulerian velocity directly from particle images. Com-
bined with IPR, the proposed method was able to reconstruct the underlying velocity field through a single
optimization procedure. The proposed scheme was assessed with synthetic images. It was proved that our
approach was quite accurate and in addition robust because it could converge although initialized with zero
velocities. We are currently working on real datasets in order to demonstrate the potential of the proposed
technique. A viable perspective is to incorporate CFD models under current ensemble framework. It is
expected that the CFD model will bring finer flow resolution and physical balanced/coherent perturbations
into the ensemble approached.
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