Images of quantum representations of mapping class groups and Dupont-Guichardet-Wigner quasi-homomorphisms - Archive ouverte HAL
Article Dans Une Revue Journal de l' Institut de Mathématiques de Jussieu Année : 2018

Images of quantum representations of mapping class groups and Dupont-Guichardet-Wigner quasi-homomorphisms

Résumé

We prove that either the images of the mapping class groups by quantum representations are not isomorphic to higher rank lattices or else the kernels have a large number of normal generators. Further, we show that the images of the mapping class groups have non-trivial 2-cohomology, at least for small levels. For this purpose, we considered a series of quasi-homomorphisms on mapping class groups extending the previous work of Barge and Ghys (Math. Ann. 294 (1992), 235-265) and of Gambaudo and Ghys (Bull. Soc. Math. France 133(4) (2005), 541-579). These quasi-homomorphisms are pull-backs of the Dupont Guichardet Wigner quasi-homomorphisms on pseudo-unitary groups along quantum representations.

Dates et versions

hal-02330074 , version 1 (23-10-2019)

Identifiants

Citer

Louis Funar, Wolfgang Pitsch. Images of quantum representations of mapping class groups and Dupont-Guichardet-Wigner quasi-homomorphisms. Journal de l' Institut de Mathématiques de Jussieu, 2018, 17 (2), pp.277-304. ⟨10.1017/S147474801500047X⟩. ⟨hal-02330074⟩
32 Consultations
0 Téléchargements

Altmetric

Partager

More