Approximate joint diagonalization with Riemannian optimization on the general linear group - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Matrix Analysis and Applications Année : 2020

Approximate joint diagonalization with Riemannian optimization on the general linear group

Résumé

We consider the classical problem of approximate joint diagonalization of matrices, which can be cast as an optimization problem on the general linear group. We propose a versatile Riemannian optimization framework for solving this problem-unifiying existing methods and creating new ones. We use two standard Riemannian metrics (left-and right-invariant metrics) having opposite features regarding the structure of solutions and the model. We introduce the Riemannian optimization tools (gradient, retraction, vector transport) in this context, for the two standard non-degeneracy constraints (oblique and non-holonomic constraints). We also develop tools beyond the classical Riemannian optimization framework to handle the non-Riemannian quotient manifold induced by the non-holonomic constraint with the right-invariant metric. We illustrate our theoretical developments with numerical experiments on both simulated data and a real electroencephalographic recording.
Fichier principal
Vignette du fichier
SIMAX_AJD_GL.pdf (738.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02328480 , version 1 (23-10-2019)

Identifiants

Citer

Florent Bouchard, Bijan Afsari, Jérôme Malick, Marco Congedo. Approximate joint diagonalization with Riemannian optimization on the general linear group. SIAM Journal on Matrix Analysis and Applications, 2020, 41 (1), pp.152-170. ⟨10.1137/18M1232838⟩. ⟨hal-02328480⟩
183 Consultations
379 Téléchargements

Altmetric

Partager

More