A Straightforward Approach to Multifunctional Graphene
Résumé
Graphene has been covalently functionalized through a one-pot reductive pathway using graphite intercalation compounds (GICs), in particular KC8, with three different orthogonally protected derivatives of 4-aminobenzylamine. This novel multifunctional platform exhibits excellent bulk functionalization homogeneity (Hbulk) and degree of addition while preserving the chemical functionalities of the organic addends through different protecting groups, namely: tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (Cbz) and phthalimide (Pht). We have employed (temperature-dependent) statistical Raman spectroscopy (SRS), X-ray photoelectron spectroscopy (XPS), magic angle spinning solid state 13C NMR (MAS-NMR), and a characterization tool consisting of thermogravimetric analysis coupled with gas chromatography and mass spectrometry (TG-GC-MS) to unambiguously demonstrate the covalent binding and the chemical nature of the different molecular linkers. This work paves the way for the development of smart graphene-based materials of great interest in biomedicine or electronics, to name a few, and will serve as a guide in the design of new 2D multifunctional materials
Domaines
MatériauxOrigine | Fichiers produits par l'(les) auteur(s) |
---|