Fine-Grained Action Detection and Classification in Table Tennis with Siamese Spatio-Temporal Convolutional Neural Network - Archive ouverte HAL Access content directly
Conference Papers Year : 2019

Fine-Grained Action Detection and Classification in Table Tennis with Siamese Spatio-Temporal Convolutional Neural Network

Abstract

Human action recognition in videos is one of the key problems in visual data interpretation. Despite intensive research, the recognition of actions with low inter-class variability remains a challenge. To answer this problem, my thesis focus on fine-grained classification challenge using a Siamese Spatio-Temporal Convolutional Neural Network and apply it to a new dataset we have introduced TTStroke-21. Our model take as input data RGB images and Optical Flow and is able to reach an accuracy of 91.4% against 43.1% for our baseline on temporal segmented videos. Detection and classification in videos using a sliding temporal window leads to a score of 81.3% over the whole dataset.
Fichier principal
Vignette du fichier
ICIP2019_3MT.pdf (1.49 Mo) Télécharger le fichier
Poster3MT.pdf (1.65 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-02326229 , version 1 (08-06-2020)

Identifiers

Cite

Pierre-Etienne Martin, Jenny Benois-Pineau, Renaud Péteri. Fine-Grained Action Detection and Classification in Table Tennis with Siamese Spatio-Temporal Convolutional Neural Network. 2019 IEEE International Conference on Image Processing (ICIP), Sep 2019, Taipei, Taiwan. pp.3027-3028, ⟨10.1109/ICIP.2019.8803382⟩. ⟨hal-02326229⟩
193 View
177 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More