Superpixel Partitioning of Very High Resolution Satellite Images for Large-Scale Classification Perspectives with Deep Convolutional Neural Networks
Résumé
Supervised classification is the fundamental task for land-cover map generation. Deep neural networks recently outperformed other state-of-the-art classifiers in many machine learning challenges, from semantic segmentation to speech recognition. Such strategies are now commonly employed in the literature for the purpose of land-cover mapping. This paper develops the strategy for the use of deep networks to label very high resolution satellite images, with the perspective of mapping regions at country scale. Therefore, a superpixel based method is introduced in order to (i) ensure correct delineation of objects and (ii) perform the classification in a dense way but with decent computing times.