Fabrication of porous anodic alumina (PAA) templates with straight pores and with hierarchical structures through exponential voltage decrease technique - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Surface and Coatings Technology Année : 2019

Fabrication of porous anodic alumina (PAA) templates with straight pores and with hierarchical structures through exponential voltage decrease technique

Résumé

The oxide barrier layer at the bottom of the pores has been successfully thinned by applying an exponential voltage decrease process followed by a wet chemical etching. The impact of the potential drop on the porous anodic alumina (PAA) structure has been deeply investigated, as well as the electrolyte temperature, the number of potential steps and the exponential decay rate. The results presented herein evidence that straight pores can be obtained and simultaneously remove the dielectric layer in spite of applying the exponential voltage decay during the PAA synthesis, through a smart adjustment between the anodization conditions and exponential voltage decay parameters. Additionally, the PAA structure can be tuned to fabricate hierarchically nanoporous templates with secondary pores ranging from 2 up to 10 branches. The presented simple procedure aims to become a standard step for the fabrication of the next generation PAA templates based devices.
Fichier principal
Vignette du fichier
hal-2019-Fabrication of porous anodic alumina.pdf (4.06 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02325370 , version 1 (22-10-2019)

Identifiants

Citer

Leandro Sacco, Ileana Florea, Costel Sorin Cojocaru. Fabrication of porous anodic alumina (PAA) templates with straight pores and with hierarchical structures through exponential voltage decrease technique. Surface and Coatings Technology, 2019, 364, pp.248-255. ⟨10.1016/j.surfcoat.2019.02.086⟩. ⟨hal-02325370⟩
16 Consultations
40 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More