Time Optimal Synthesis for a so(3)-left-invariant Control System on a Sphere - Archive ouverte HAL
Communication Dans Un Congrès Année : 2003

Time Optimal Synthesis for a so(3)-left-invariant Control System on a Sphere

Ugo Boscain
Yacine Chitour

Résumé

Consider the control system (σ) given by ẋ = x(f + ug) where x ∈ SO(3), |u| ≤ 1 and f, g ∈ so(3) define two perpendicular left-invariant vector fields normalized so that ∥f∥ = cos(α) and ∥g∥ = sin(α), α ∈ (0, π/4). In this paper, we provide an upper bound and a lower bound for N(α), the maximum number of switchings for time-optimal trajectories of (σ). More precisely, we show that NS(α) ≤ N(α) ≤ NS(α) + 4, where NS(α) is a suitable integer function of a such that NS(α) α → 0 ̃ π/4α. The result is obtained by studying the time optimal synthesis of a projected control problem on ℝP2, where the projection is defined by an appropriate Hopf fibration.
Fichier non déposé

Dates et versions

hal-02320848 , version 1 (19-10-2019)

Identifiants

  • HAL Id : hal-02320848 , version 1

Citer

Ugo Boscain, Yacine Chitour. Time Optimal Synthesis for a so(3)-left-invariant Control System on a Sphere. 42nd IEEE Conference on Decision and Control, Dec 2003, Maui, United States. pp.2740-2745. ⟨hal-02320848⟩

Collections

UNIV-PARIS-SACLAY
21 Consultations
0 Téléchargements

Partager

More