Hardy spaces on Riemannian manifolds with quadratic curvature decay - Archive ouverte HAL
Article Dans Une Revue Analysis & PDE Année : 2022

Hardy spaces on Riemannian manifolds with quadratic curvature decay

Résumé

Let (M, g) be a complete Riemannian manifold. Assume that the Ricci curvature of M has quadratic decay and that the volume growth is strictly faster than quadratic. We establish that the Hardy spaces of exact 1-differential forms on M , introduced in [4], coincide with the closure in L p of R(d) ∩ L p (Λ 1 T * M) when 1 < p < ν, where ν > 2 is related to the volume growth. The range of p is optimal. This result applies, in particular, when M has a finite number of Euclidean ends.
Fichier principal
Vignette du fichier
DR-05-11-2020.pdf (489.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02320652 , version 1 (19-10-2019)
hal-02320652 , version 2 (09-11-2020)

Identifiants

Citer

Baptiste Devyver, Emmanuel Russ. Hardy spaces on Riemannian manifolds with quadratic curvature decay. Analysis & PDE, 2022, 15 (5), pp.1169-1213. ⟨10.2140/apde.2022.15.1169⟩. ⟨hal-02320652v2⟩
109 Consultations
75 Téléchargements

Altmetric

Partager

More