A DOUBLY SPLITTING SCHEME FOR THE CAGINALP SYSTEM WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

A DOUBLY SPLITTING SCHEME FOR THE CAGINALP SYSTEM WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS

Résumé

We propose a time semi-discrete scheme for the Caginalp phase-field system with singular potentials and dynamic boundary conditions. The scheme is based on a time splitting which decouples the equations and on a convex splitting of the energy associated to the problem. The scheme is unconditionally uniquely solvable and the energy is nonincreasing if the time step is small enough. The discrete solution is shown to converge to the energy solution of the problem as the time step tends to 0. The proof involves a multivalued operator and a monotonicity argument. This approach allows us to compute numerically singular solutions to the problem.
Fichier principal
Vignette du fichier
langa_pierre.pdf (245.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02310210 , version 1 (10-10-2019)

Identifiants

Citer

Franck Davhys Reval Langa, Morgan Pierre. A DOUBLY SPLITTING SCHEME FOR THE CAGINALP SYSTEM WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS. 2019. ⟨hal-02310210⟩
95 Consultations
83 Téléchargements

Altmetric

Partager

More