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A DOUBLY SPLITTING SCHEME FOR THE CAGINALP

SYSTEM WITH SINGULAR POTENTIALS AND DYNAMIC

BOUNDARY CONDITIONS

FRANCK DAVHYS REVAL LANGA AND MORGAN PIERRE

Dedicated to Michel Pierre on the occasion of his 70th birthday

Abstract. We propose a time semi-discrete scheme for the Caginalp phase-field
system with singular potentials and dynamic boundary conditions. The scheme is
based on a time splitting which decouples the equations and on a convex splitting
of the energy associated to the problem. The scheme is unconditionally uniquely
solvable and the energy is nonincreasing if the time step is small enough. The
discrete solution is shown to converge to the energy solution of the problem as the
time step tends to 0. The proof involves a multivalued operator and a monotonicity
argument. This approach allows us to compute numerically singular solutions to
the problem.

Keywords: Caginalp phase-field system, logarithmic potential, dynamic boundary
conditions, maximal monotone operator, multivalued operator, convex splitting.

1. Introduction

The Caginalp system has been proposed in [9] to describe phase transition phe-
nomena such as the melting-solidification in certain classes of materials. Dynamic
boundary conditions have been introduced by physicists in the context of the Cahn-
Hilliard equation to account for interactions of the bulk material with the walls [23,
24, 25]. In such models, the time derivative appears explicitly in the boundary
conditions.

The Caginalp system with dynamic boundary conditions is the initial and bound-
ary value problem

∂tw −∆w = −∂tu, t > 0, x ∈ Ω,

∂tu−∆u+ f(u)− λu = w, t > 0, x ∈ Ω,

∂tψ −∆Γψ + g(ψ)− αψ + ∂nu = 0, t > 0, x ∈ Γ,

∂nw|Γ = 0, u|Γ = ψ,

w|t=0 = w0, u|t=0 = u0, ψ|t=0 = ψ0,

(1.1)

where Ω denotes a bounded domain of R2 or R3 with sufficiently smooth boundary
∂Ω = Γ. In (1.1), λ and α are nonnegative constants, ∆Γ is the Laplace-Beltrami
operator and ∂n is the outward normal derivative. The state variables (u,w) denote
the order parameter and the temperature, respectively, and Ω is the domain which
contains the material. A thermodynamically relevant choice for the nonlinearity f
is the logarithmic function

f(s) = ln

(
1 + s

1− s

)
, s ∈ (−1, 1). (1.2)
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The function g is assumed to be smooth and nonincreasing. More general assump-
tions on f and g with be given in (2.5)-(2.6).

The well-posedness and longtime behaviour of the Caginalp system with singular
potentials and dynamic boundary conditions has been thoroughly analyzed in [13,
14, 15, 17] (see also [27]). The dynamic boundary condition for the order parameter
is the third equation in (1.1). For the classical Caginalp system, this equation is
usually replaced by the no-flux boundary condition for u. In the latter case, if f is
the logarithmic potential (1.2), a separation property holds which guarantees that
u stays away from the pure phases ±1 [16, 28]. In contrast, for problem (1.2), the
solution u may take the values ±1 on the boundary Γ, unless a sign condition holds
for the nonlinearity on the boundary.

In the singular cases, solutions to (1.1) can no longer be interpreted in the usual
sense. In order to remove the sign condition and to analyze the longtime behaviour of
solutions, the authors used in [15] the notion of variational solution, by adapting to
problem (1.1) the approach in [34] which was developed in the context of the Cahn-
Hilliard equation. We refer the reader to the review papers [18, 33] and references
therein for more information on this subject.

From a numerical point of view, calculations for problem (1.1) with a loga-
rithmic function were performed in [15] for regular solutions and for singular so-
lutions, but only up to the singular time. An Allen-Cahn type problem which
has some similarities with this problem (cf. Remark 4.5) was analyzed in [37],
along with numerical computations of singular solutions in one space dimension.
The numerical analysis and numerical computation of related problems involving
dynamic boundary conditions and regular nonlinearities were also considered in,
e.g., [1, 6, 19, 20, 26, 30, 31, 36]. Cahn-Hilliard type equations with logarithmic
potential and classical boundary conditions have also drawn a lot of interest, cf.,
e.g. [4, 10, 11, 12, 21]. In these situations, one challenge is to adapt to the dis-
cretized problem the separation property which holds for the continuous time and
space problem.

Up to now, the computation of singular solutions for Cahn-Hilliard type problems
involving both a logarithmic potential and dynamic boundary conditions does not
seem to have been addressed. Our purpose in this paper is to propose and to analyze
a scheme which allows us to compute singular solutions to problem (1.1) even after
the singularity occurs. A fundamental idea in our approach is to use the energy
associated to the problem.

Indeed, let F and G denote an antiderivative of f and g, respectively. Then we
have, assuming that (u,w) is a regular solution to (1.1),

d

dt
Ẽ(u(t), w(t)) +

∫
Ω
|∇w(t)|2dx+

∫
Ω
|∂tu(t)|2dx+

∫
Γ
|∂tu(t)|2dσ = 0, (1.3)

where the energy Ẽ is defined by

Ẽ(u,w) def
=

∫
Ω

1

2
|∇u|2 + F (u)− λ

2
u2dx+

∫
Ω

1

2
|w|2dx

+

∫
Γ

1

2
|∇Γu|2 +G(u)− α

2
u2dσ.

Relation (1.3) shows in particular that Ẽ(u(t), w(t)) is nonincreasing as t increases. It
can be obtained by multiplying the first equation in (1.1) by w, the second equation



A DOUBLY SPLITTING SCHEME FOR THE SINGULAR CAGINALP SYSTEM 3

by ∂tu, by summing the two resulting equations and integrating on Ω; an integration
by parts using the dynamic boundary condition yields the result.

Our time discretization is based on two ideas: a splitting in time, which decouples
the resolution of the equations in the problem at each time step (as in, e.g. [5]),
and a convex splitting of the energy. Thus, the scheme is unconditionally uniquely
solvable (Proposition 3.1). A discrete version of (1.3) is then obtained if the time
step is small enough (Lemma 3.2).

By letting the time step tend to 0 and using a monotonicity argument, we show
that the time semi-discrete solution converges to an energy solution of problem (1.1)
(Theorem 3.4, our main result). This notion of solution is adapted from [27], where
a problem similar to (1.1), with dynamic boundary conditions for the temperature as
well, has been considered (our “energy solutions” are called “weak solutions” in [27];
they are more regular than the variational solutions described in [15]). Singularities
are taken into account thanks to duality techniques involving a multivalued operator.

For the numerical computation of solutions, we use a finite element method for
the space discretization of the problem. At each time step, a constrained convex
minimization problem is solved in order to compute the order parameter u, with the
constraint that u has values in [−1, 1]. For this purpose, the logarithmic nonlinearity
f (cf. (1.2)) is regularized, thus making a gradient available for the energy.

Our paper is organized as follows. In Section 2, we introduce the functional
framework and the notion of energy solution to problem (1.1). We describe the
time semi-discrete scheme and its behaviour in Section 3. In Section 4, we focus on
the analysis and numerical computation of 1d stationary singular solutions to (1.1).
This particular situation was pointed out as a counter-example in [34]. Section 5
concludes the paper with numerical computations of regular and singular solutions
to the Caginalp system in two space dimension.

2. Energy solutions

2.1. Main assumptions and notation. We set H := L2(Ω) and denote by (·, ·)
the scalar product in H (and also in H2 and H3) and by ∥ · ∥ the related norm.
Next, we set V := H1(Ω) and denote by V ′ the (topological) dual of V . The duality
between V ′ and V will be indicated by ⟨·, ·⟩. Identifying H with H ′ through the
scalar product of H, it is then well known that V ⊂ H ⊂ V ′ with continuous and
dense inclusions. In other words, (V,H, V ′) is a Hilbert triplet (see, e.g., [32]).

Since the system (1.1) also includes equations defined on Γ, we introduce some
further spaces. Thus, we set HΓ := L2(Γ) and VΓ := H1(Γ) and denote by (·, ·)Γ the
scalar product in HΓ, by ∥ · ∥Γ the corresponding norm, and by ⟨·, ·⟩Γ the duality
between V ′

Γ and VΓ. In general, the symbol ∥ · ∥X indicates the norm in the generic
(real) Banach space X and ⟨·, ·⟩X stands for the duality between X and X ′. We also
denote by ∇Γ the tangential gradient on Γ. We can thus define the spaces

H := H ×HΓ and V := {z ∈ V : z|Γ ∈ VΓ} .
We introduce the H-scalar product in the following natural way,(

(u, ψ), (v, φ)
)
H := (u, v) + (ψ,φ)Γ,

and the associated norm is denoted ∥ · ∥H. Next, we set, on V,

((u, v))V :=

∫
Ω
(∇u · ∇v)dx+

∫
Γ
u|Γv|Γ +∇Γu|Γ · ∇Γv|Γdσ
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and, analogously, we set, on V ,

((u, v))V :=

∫
Ω
(∇u · ∇v)dx+

∫
Γ
u|Γv|Γdσ.

Here and below, the restriction |Γ is understood in the sense of traces. We note that
the norm ∥ · ∥V related to the scalar product ((·, ·))V is equivalent to the usual one.
It is not difficult to prove (see, e.g. [35, Lemma 2.1]) that the space V is dense in H.
A characterization of the spaces V ′ and V ′ has been given in [27, Proposition 2.1].

We also define the continuous elliptic operators

A : V → V ′, ⟨Av1, v2⟩ :=
∫
Ω
∇v1 · ∇v2dx,

AΓ : VΓ → V ′
Γ, ⟨AΓξ1, ξ2⟩Γ :=

∫
Γ
∇ξ1 · ∇ξ2dσ,

A : V → V ′, ⟨Av1, v2⟩V := ⟨Av1, v2⟩+ ⟨AΓξ1, ξ2⟩Γ,
where ξi = vi|Γ for i = 1, 2. In particular, for v ∈ V , we have,

∥Av∥V ′
def
= sup

∥φ∥V ≤1
⟨Av, φ⟩V = sup

∥φ∥V ≤1
(∇v,∇φ) ≤ ∥∇v∥, (2.1)

where we used the Cauchy-Schwarz inequality.
For v ∈ V ′, we denote

⟨v⟩ := 1

|Ω|
⟨v, 1⟩,

where |Ω| is the measure of Ω. We notice that there exists a positive constant cΩ
such that

|⟨v⟩| ≤ cΩ∥v∥V ′ , ∀v ∈ V ′, (2.2)

∥v − ⟨v⟩∥V ′ ≤ cΩ∥v∥V ′ , ∀v ∈ V ′, (2.3)

∥v − ⟨v⟩∥V ≤ cΩ∥∇v∥, ∀v ∈ V. (2.4)

Next, we state our hypotheses on the nonlinearities (cf. [15]). We assume that
1. f ∈ C2(−1, 1),

2. f(0) = 0, lims→±1 f(s) = ±∞,

3. f ′(s) ≥ 0, lims→±1 f
′(s) = +∞,

4. f ′′(s)sign(s) ≥ 0.

(2.5)

The logarithmic function f given by (1.2) satisfies these conditions.
In (2.5), the condition f(0) = 0 is merely a normalization: in case f(0) ̸= 0, then

by changing f(s) into f(s) − f(0) and w into w − f(0) in system (1.1), we recover
this normalization.

We assume that the (nonlinear) function g satisfies

g ∈ C2(R), g′(s) ≥ 0 and lim inf
s→±∞

g′(s) ≥ κ1, (2.6)

for some κ1 > 0. Note that we do not require g(0) = 0.

Remark 2.1. Let g̃ be a function which belongs to C2([−1, 1]). Then we can extend
g̃ to the whole real line to a C2 function with compact support, also denoted g̃, and
such that

g̃(s) = g(s)− αs, s ∈ R,
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where g satisfies (2.6) and α > 0 is chosen large enough. Thus, we recover the
assumptions on the nonlinearities f and g̃ which were made in [15].

We set

F (s) =

∫ s

0
f(r)dr, s ∈ (−1, 1), G(s) =

∫ s

0
g(r)dr, s ∈ R.

If lims→+1 F (s) exists, then we extend F by continuity to s = +1 and similarly, if
lims→−1 F (s) exists, we extend F by continuity to s = −1. This is the case, e.g.
with the logarithmic function f (1.2). Moreover, we set F (s) = +∞ outside the
effective domain of F ,

dom(F ) = {s ∈ R, F (s) < +∞} ⊂ [−1, 1].

Then, identifying f and g with maximal monotone graphs in R×R, we have f = ∂F
and g = ∂G, ∂ representing the subdifferential of convex analysis (here in R) [2, 3, 7].

Next, we define the functional

J : H → R ∪ {+∞}, J(v, φ) :=

∫
Ω
F (v)dx+

∫
Γ
G(φ)dσ,

where it is understood that one of, or both, the integrals in the expression of J may
take the value +∞. We denote by ∂J the subdifferential of J in the space H, namely,
for (u, ψ), (ξ, ζ) ∈ H, we have

(ξ, ζ) ∈ ∂J(u, ψ)
def⇐⇒ J(v, φ) ≥ J(u, ψ) +

(
(ξ, ζ), (v, φ)− (u, ψ)

)
H ∀(v, φ) ∈ H.

It is well known (cf, e.g., [3, Prop. 2.8 p. 67]) that the above condition is equivalent
to

ξ = f(u) a.e. in Ω and ζ = g(ψ) a.e. on Γ (2.7)

(in particular, the function u then takes values in (−1, 1) a.e. in Ω).
We will also need a relaxation of the functional J . Thus, we introduce the restric-

tion JV of J to the space V and its subdifferential ∂V,V ′JV in the V ′-V duality. This,
in view of the identification H ∼ H′, has to be understood as a maximal monotone
operator in V × V ′, namely, for U ∈ V and ξ ∈ V ′, we have

ξ ∈ ∂V,V ′JV(U)
def⇐⇒ JV(Ũ) ≥ JV(U) + ⟨ξ, Ũ − U⟩V ∀Ũ ∈ V. (2.8)

A precise characterization of ∂V,V ′J in the spirit of (2.7) is not immediate to be
given. In particular, it is reasonable to expect that ∂V,V ′J may be multivalued due
to the bounded domain of f (see, e.g., [37]).

2.2. Existence and uniqueness of energy solutions. Our assumptions on the
initial data are

U0 := (u0, ψ0) ∈ V with JV(U0) < +∞ and w0 ∈ H. (2.9)

Definition 2.2. Let assumption (2.5)-(2.6) hold. Given (U0, w0) which satisfies (2.9),
we say that a pair (U,w) with U = (u, ψ) is an energy solution of problem (1.1) orig-
inating from (u0, ψ0, w0) if

• U(0) = U0 in H and w(0) = w0 in H;
• U ∈ C0([0,+∞);H) ∩ L∞(0, T ;V) for any T > 0;
• ∂tU ∈ L2(0, T ;H) for any T > 0;
• w ∈ C0([0,+∞);H) ∩ L2(0, T ;V ) for any T > 0;
• ∂tw ∈ L2(0, T ;V ′) for any T > 0;
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and the following relations hold for a.e. t in (0,+∞):

∂tw(t) + ∂tu(t) +Aw(t) = 0, in V ′, (2.10)

∂tU(t) +AU(t) + ξ(t) = (w(t), 0) + (λu(t), αψ(t)), in V ′, (2.11)

ξ(t) ∈ ∂V,V ′JV(U(t)), in V ′. (2.12)

We have:

Lemma 2.3. For two energy solutions (U i, wi) departing from (U i
0, w

i
0), i = 1, 2, we

have the following estimate on the difference (Ũ , w̃) = (U1 − U2, w2 − w2) in terms

of the initial datum (Ũ0, w̃0) := (U1
0 − U2

0 , w
1
0 − w2

0):

∥Ũ(t)∥2H + ∥w̃(t)∥2V ′ +

∫ t

0

(
⟨AŨ(s), Ũ(s)⟩V + ∥w̃(s)∥2

)
ds

≤ Λeλ
′t
(
∥Ũ0∥2H + ∥w̃0∥2V ′

)
, (2.13)

where Λ is a positive constant which is independent of t and of the initial data, and
λ′ = 2max{λ, α}+ 1.

Proof. We write (2.10) for (U1, w1) and for (U2, w2), we take the difference, and we
integrate in time. We find that for all t ≥ 0,

w̃(t) + ũ(t) +A

∫ t

0
w̃(s)ds = w̃0 + ũ0, in V ′. (2.14)

Next, we write (2.11) for (U1, w1) and for (U2, w2), and we take the difference. This
yields, for a.e. t ∈ (0,+∞),

∂tŨ(t) +AŨ(t) + ξ1(t)− ξ2(t) = (w̃(t), 0) + (λũ(t), αψ̃(t)), in V ′. (2.15)

We take the product of (2.14) by w̃(t) (in the V ′-V duality) and the product of (2.15)

by Ũ(t) (in the V ′-V duality), we add the resulting equations, and we obtain

1

2

d

dt

∥∥∥∥∫ t

0
∇w̃(s)ds

∥∥∥∥2 + 1

2

d

dt
∥Ũ(t)∥2H + ∥w̃(t)∥2 + ⟨AŨ(t), Ũ(t)⟩V

+⟨ξ1(t)− ξ2(t), Ũ(t)⟩V = λ∥ũ∥2 + α∥ψ̃(t)∥2Γ + (w̃0, w̃(t)) + (ũ0, w̃(t)),

for a.e. t ∈ (0,+∞). We used here that the term (ũ(t), w̃(t)) cancels. We write

(w̃0, w̃(t)) = (w̃0, w̃(t)− ⟨w̃(t)⟩) + (⟨w̃0⟩, w̃(t))

=
1

2

d

dt

(
2w̃0,

∫ t

0
w̃(s)− ⟨w̃(s)⟩ds

)
+ (⟨w̃0⟩, w̃(t)).

Using the monotonicity of ∂V,V ′JV and Young’s inequality, we find

d

dt
Y(t) + ⟨AŨ(t), Ũ(t)⟩V + ∥w̃(t)∥2 ≤ 2max{λ, α}Y(t) + 2∥⟨w̃0⟩∥2 + 2∥ũ0∥2, (2.16)

where

Y(t) =

∥∥∥∥∫ t

0
∇w̃(s)ds

∥∥∥∥2 − (2w̃0,

∫ t

0
w̃(s)− ⟨w̃(s)⟩ds

)
+ c∥w̃0∥2V ′ + ∥Ũ(t)∥2H.

Here, c > 0 is chosen large enough so that

Y(t) ≥ c0

(∥∥∥∥∫ t

0
∇w̃(s)ds

∥∥∥∥2 + ∥w̃0∥2V ′ + ∥Ũ(t)∥2H

)
(2.17)
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for some c0 > 0 (use (2.4) and Young’s inequality). By (2.2), we have

∥⟨w̃0⟩∥2 ≤ c′Ω∥w̃0∥2V ′ . (2.18)

Using (2.18) in (2.16) and applying Gronwall’s lemma to the resulting differential
inequality, we obtain

Y(t) ≤ Ceλ
′t
(
∥Ũ0∥2H + ∥w̃0∥2V ′

)
, t ≥ 0, (2.19)

with λ′ = 2max{λ, α}+ 1. Using (2.14) and (2.1), we see that

∥w̃(t)∥2V ′ ≤ C ′

(∥∥∥∥∫ t

0
∇w̃(s)ds

∥∥∥∥2 + ∥w̃0∥2V ′ + ∥ũ(t)∥2 + ∥ũ0∥2
)
. (2.20)

Estimate (2.13) follows from (2.19), (2.17) and (2.20). �
Theorem 2.4. For every initial datum (u0, ψ0, w0) which satisfies (2.9), problem (1.1)
possesses a unique energy solution (U,w) in the sense of Definition 2.2.

Proof. Uniqueness follows from Lemma 2.3. Existence is a consequence of Theo-
rem 3.4. �

By using a regularization argument, we obtain the following result.

Theorem 2.5. Let (u0, ψ0, w0) satisfy (2.9). Then the energy solution to prob-
lem (1.1) is also a variational solution (in the sense defined in [15, Definition 4.1]).

Proof. We first note [15, Theorem 4.3] that problem (1.1) possesses a unique varia-
tional solution for any initial condition which satisfies

(u0, ψ0, w0) ∈ L∞(Ω)× L∞(Γ)× L2(Ω) and ∥u0∥L∞(Ω) ≤ 1, ∥ψ0∥L∞(Γ) ≤ 1.

This is a weaker requirement than (2.9). We approximate the initial datum (u0, ψ0, w0)
which satisfies (2.9) by a sequence (uk0, ψ

k
0 , w

k
0) such that for each k, (uk0, ψ

k
0 , w

k
0) is

regular enough, satisfies (2.9), and

∥uk0 − u0∥+ ∥ψk
0 − ψ0∥Γ + ∥wk

0 − w0∥ → 0, as k → +∞.

We also introduce a C1 regularization fN of the nonlinearity f , as in [15]. Since
fN is regular, the (unique) solution (ukN , ψ

k
N , w

k
N ) to (1.1) where f is replaced by

fN and where the initial condition is (uk0, ψ
k
0 , w

k
0), is regular. Now, we let first N

tend to +∞, and then k tend to +∞. The proof of Theorem 4.3 in [15] shows that
the limit (u, ψ,w) that we obtain is the variational solution to problem (1.1). On
the other hand, the theory of maximal monotone operators [2, 3, 7] shows that for
each k, (ukN , ψ

k
N , w

k
N ) tends to the energy solution (uk, ψk, wk) of (1.1) with initial

condition (uk0, ψ
k
0 , w

k
0), as N tends to +∞. Lemma 2.3 implies that, as k tends to

+∞, (uk, ψk, wk) tends to the energy solution of (1.1) which, by uniqueness of the
limit, is (u, ψ,w). �

From [15, Proposition 1], we deduce:

Corollary 2.6. We assume that either lims→±1 F (s) = +∞ or

g(−1) + α < 0 < g(1)− α. (2.21)

Then the energy solution satisfies −1 < u(x, t) < 1 for a.e. (x, t) ∈ Ω× R+ and for
a.e. (x, t) ∈ Γ × R+; for all t0 > 0 and for t ≥ t0, this solution solves (1.1) in the
usual sense.
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Condition (2.21) is known as the sign condition. For the logarithmic function
f (1.2), we have lims→±1 F (s) < +∞, and this sign condition is needed to guarantee
that every solution to problem (1.1) is classical.

3. The time semi-discrete scheme

Let δt > 0 denote an arbitrary (fixed) time step. In a formal way (that is, assuming
that the solution is regular enough), our time semi-discretization of (1.1) reads: let
(u0, ψ0, w0) = (u0, ψ0, w0) be given and for n = 0, 1, 2 . . . , let (un+1, ψn+1, wn+1)
solve

(i) (un+1 − un)/δt−∆un+1 + f(un+1) = λun + wn in Ω,

(ii) (ψn+1 − ψn)/δt−∆Γψ
n+1 + g(ψn+1) + ∂nu

n+1 = αψn on Γ,

(iii) un+1|Γ = ψn+1,

(iv) (wn+1 − wn)/δt−∆wn+1 = −(un+1 − un)/δt in Ω,

(v) ∂nw
n+1|Γ = 0.

(3.1)

This scheme is based on two types of splitting: a splitting in time, since we first solve
the system (i)-(ii)-(iii) of (3.1), which gives us (un+1, ψn+1), and secondly we solve
(iv)-(v), which gives us wn+1. We also use a convex splitting of the energy in (i)-(ii)-
(iii), which ensures an unconditional unique solvability: the nonlinear (contractive)
terms are treated implicitly, whereas the (expansive) terms λu and αψ are treated
explicitly.

3.1. Unconditional unique solvability and energy estimate. The rigorous ver-
sion of (3.1) reads as follows. Assume that (U0, w0) = (U0, w0) which satisfies (2.9)
is given and for n = 0, 1, 2, . . . let (Un+1, wn+1) ∈ V × V with Un+1 = (un+1, ψn+1)
be defined by

Un+1 minimizes Ū 7→ En(Ū) in V, (3.2)

where

En(Ū) :=
1

2δt
∥Ū − Un∥2H +

1

2
⟨AŪ , Ū⟩V + JV(Ū)

−λ(un, ū)− (wn, ū)− α(ψn, ψ̄)Γ (3.3)

with Ū = (ū, ψ̄), and (once Un+1 is computed) wn+1 ∈ V solves

(wn+1 − wn)/δt+Awn+1 = −(un+1 − un)/δt, in V ′. (3.4)

We have:

Proposition 3.1 (Unique solvability for all δt). Assume that (U0, w0) = (U0, w0)
which satisfies (2.9) is given. Then there exists a unique sequence (Un, wn)n∈N in
(V × H)N generated by the scheme (3.2)-(3.4). Moreover, for all n ∈ N, we have
JV(U

n) < +∞.

Proof. Assume that (Un, wn) satisfies Un ∈ V and wn ∈ H for some n ∈ N. Since
JV is convex on V, the function En, which is the sum of JV , of a continuous coercive
quadratic form on V and of a continuous linear form on V, is strictly convex on V
and lower semi-continuous. Moreover, by (2.5), we have F (s) ≥ 0 for all s ∈ dom(F )
and by (2.6), we also have

G(s) ≥ κ1
4
s2 − κ2, s ∈ R,
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for some κ2 ≥ 0. Since the linear terms in En are dominated by the quadratic terms,
we have

En(Ū) ≥ c0∥Ū∥2V − c1, Ū ∈ V,

for some c0 > 0 small enough and some c1 ≥ 0. Thus, En(Ū) → +∞ as ∥Ū∥V → +∞
and so En has a unique minimizer Un+1 in the Hilbert space V (see, e.g., [22]).
Moreover, En(Un+1) ≤ En(Un) < +∞, so JV(U

n+1) < +∞ as well. Finally, the Lax-
Milgram theorem shows that problem (3.4) has a unique solution wn+1 ∈ V . �

We define the energy associated to U through

E(Ū) :=
1

2
⟨AŪ , Ū⟩V + JV(Ū)− λ

2
∥ū∥2 − α

2
∥ψ̄∥2Γ, Ū = (ū, ψ̄) ∈ V. (3.5)

Lemma 3.2 (Energy estimate for small δt). Assume that δt ≤ 1/2 and let (Un, wn) ∈
V × H such that JV(U

n) < +∞. Then the solution (Un+1, wn+1) of (3.2)-(3.4)
satisfies

E(Un+1)+
1

2
∥wn+1∥2+ 1

4δt
∥Un+1−Un∥2H+ δt∥∇wn+1∥2 ≤ E(Un)+

1

2
∥wn∥2. (3.6)

Proof. By (3.2), we have En(Un+1) ≤ En(Un), which reads

1

2δt
∥Un+1 − Un∥2H +

1

2
⟨AUn+1, Un+1⟩V + JV(U

n+1)

+λ(un, un − un+1) + α(ψn, ψn − ψn+1)Γ − (wn, un+1 − un)

≤ 1

2
⟨AUn, Un⟩V + JV(U

n),

where Un = (un, ψn). Using the well-known identity

(a, a− b) =
1

2
∥a∥2 − 1

2
∥b∥2 + 1

2
∥a− b∥2 (3.7)

(and similarly for the scalar product in HΓ) in the terms involving λ and α, we find

1

2δt
∥Un+1 − Un∥2H +

1

2
⟨AUn+1, Un+1⟩V + JV(U

n+1)− (wn, un+1 − un)

−λ
2
∥un+1∥2 + λ

2
∥un+1 − un∥2 − α

2
∥ψn+1∥2Γ +

α

2
∥ψn+1 − ψn∥2Γ

≤ 1

2
⟨AUn, Un⟩V + JV(U

n)− λ

2
∥un∥2 − α

2
∥ψn∥2Γ. (3.8)

Next, we write

−(wn, un+1 − un) = −(wn+1, un+1 − un) + (wn+1 − wn, un+1 − un)

= (wn+1, wn+1 − wn) + δt∥∇wn+1∥2 + (wn+1 − wn, un+1 − un)

=
1

2
∥wn+1∥2 − 1

2
∥wn∥2 + 1

2
∥wn+1 − wn∥2

+δt∥∇wn+1∥2 + (wn+1 − wn, un+1 − un)

where, in the second line, we used (3.4) and in the third line, we used (3.7). By the
Cauchy-Schwarz inequality and Young’s inequality, we have

|(wn+1 − wn, un+1 − un)| ≤ 1

4δt
∥un+1 − un∥2 + δt∥wn+1 − wn∥2,
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and so (3.8) implies

1

4δt
∥Un+1 − Un∥2H + E(Un+1) +

1

2
∥wn+1∥2 + δt∥∇wn+1∥2

+

(
1

2
− δt

)
∥wn+1 − wn∥2 ≤ E(Un) +

1

2
∥wn∥2. (3.9)

Since δt ≤ 1/2, this yields (3.6). �

Remark 3.3. The energy estimate (3.6) is a discrete version of (1.3).

3.2. Convergence as δt→ 0. For a time step δt > 0, let (Un, wn)n≥0 be a sequence
generated by the time semi-discrete scheme (3.2)-(3.4). We define the following
functions from R+ into V:

Uδt(t) = ((n+ 1)− t/δt)Un + (t/δt− n)Un+1, t ∈ [nδt, (n+ 1)δt) (n ∈ N),
U δt(t) = Un+1, t ∈ [nδt, (n+ 1)δt) (n ∈ N),
U δt(t) = Un, t ∈ [nδt, (n+ 1)δt) (n ∈ N).

We define similarly the functions wδt, wδt and wδt from R+ to H associated to the
sequence (wn)n≥0. Note that

∂tUδt =
Un+1 − Un

δt
in D′((0,+∞);V

)
(3.10)

and

∂twδt =
wn+1 − wn

δt
in D′((0,+∞);H

)
. (3.11)

Here, as usual, the notation D′ means that the equality holds in the sense of distri-
butions (see, e.g., [32]).

Theorem 3.4. Let (U0, w0) = (U0, w0) such that (2.9) holds. Then the solution
(Uδt, wδt) associated to scheme (3.2)-(3.4) tends to the energy solution (U,w) of
problem (1.1) in the following sense, as δt→ 0:

Uδt → U weakly- ⋆ in L∞(0,+∞;V),
Uδt → U strongly in C0([0, T ];H), for any T > 0,

∂tUδt → ∂tU weakly in L2(0,+∞;H),

wδt → w weakly- ⋆ in L∞(0,+∞;H),

wδt → w strongly in C0([0, T ], for any T > 0,

∂twδt → ∂tw weakly in L2(0, T ;V ′), for any T > 0.

Proof. By Proposition 3.1, for all n we have JV(U
n) < +∞, so that

−1 ≤ un ≤ 1 for a.e. x ∈ Ω and − 1 ≤ ψn ≤ 1 for a.e. x ∈ Γ. (3.12)

By induction, estimate (3.6) yields

E(Un) +
1

2
∥wn∥2 + 1

4δt

n−1∑
k=0

∥Uk+1 − Uk∥2H + δt

n−1∑
k=0

∥∇wk+1∥2 ≤ E(U0) +
1

2
∥w0∥2,
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for all n ≥ 1. Using (3.12) and the definition (3.5) of E , this yields

1

2
⟨AUn, Un⟩+ JV(U

n) +
1

2
∥wn∥2 + 1

4δt

n−1∑
k=0

∥Uk+1 − Uk∥2H

+δt
n−1∑
k=0

∥∇wk+1∥2 ≤ E(U0) +
1

2
∥w0∥2 + λ

2
|Ω|1/2 + α

2
|Γ|1/2, (3.13)

for all n ≥ 1. Since the right-hand side above is finite by assumption, this shows
that (Un)n is bounded in V and (wn)n is bounded in H. Thus, (Uδt), (U δt), (U δt)
are bounded in L∞(0,+∞;V) and (wδt), (wδt), (wδt) are bounded in L∞(0,+∞;H).
By letting n tend to +∞ in (3.13), we see that

1

4δt

+∞∑
k=0

∥Uk+1 − Uk∥2H + δt

+∞∑
k=0

∥∇wk+1∥2 ≤ C, (3.14)

where C < +∞ is the right-hand side of (3.13). Thanks to (3.10), this can be
rewritten

1

4

∫ +∞

0
∥∂tUδt∥2H dt+

∫ +∞

0
∥∇wδt∥2dt ≤ C, (3.15)

which shows that (∂tUδt) is bounded in L2(0,+∞;H) and (∇wδt) is bounded in
L2(0,+∞;Hd) (with d = 2 if Ω ⊂ R2 and d = 3 if Ω ⊂ R3). Moreover,

δt
+∞∑
k=0

∥Uk+1 − Uk∥2H =

∫ +∞

0
∥U δt − U δt∥2Hdt ≤ 4δt2C, (3.16)

and similarly, ∫ +∞

0
∥U δt − Uδt∥2Hdt ≤ 4δt2C (3.17)

From the estimates above, we deduce that, up to a subsequence, (Uδt), (U δt) and
(U δt) converge weakly-⋆ in L∞(0,+∞;V) to the same limit U , as δt tends to 0.
The limit U is the same in L2(0,+∞;H) by (3.16)-(3.17), and therefore also in
D′(0,+∞;H). Moreover, ∂tU ∈ L2(0,+∞;H) by (3.15). By a well-known result [38],

for any T > 0, the space
{
Ũ ∈ L∞(0, T ;V), ∂tŨ ∈ L2(0, T ;H)

}
is compactly imbed-

ded in the space C0([0, T ];H). Thus, (Uδt) converges to U strongly in C0([0, T ];H),
for any T > 0. In particular, the initial condition U(0) = U0 is satisfied.

Using (3.4) and (2.1), we have

∥wn+1 − wn∥V ′ ≤ δt∥∇wn+1∥+ ∥un+1 − un∥H .

Thus,

δt

+∞∑
n=0

∥wn+1 − wn∥2V ′ ≤ 2δt3
+∞∑
n=0

∥∇wn+1∥2 + 2δt

+∞∑
n=0

∥un+1 − un∥2H . (3.18)

Using the estimates above, we see that∫ +∞

0
∥wδt − wδt∥2V ′dt ≤

∫ +∞

0
∥wδt − wδt∥2V ′dt ≤ 8Cδt2.
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From these estimates, we deduce that, up to a subsequence, (wδt), (wδt), and (wδt)
converge weakly-⋆ in L∞(0,+∞;H) and weakly in L2(0, T ;V ) for any T > 0 to the
same limit w.

It remains to prove that the limit, which has been denoted (U,w) for notational
convenience, is indeed the energy solution to problem (1.1).

First, owing to (3.10)-(3.11), equation (3.4) can be written

∂twδt = −Awδt − ∂tuδt in L
2(0, T ;V ′), for any T > 0. (3.19)

Thus, (∂twδt) is bounded in L2(0, T ;V ′) for any T > 0 and letting δt tend to 0 in
this (linear) equation, we find that

∂tw = −Aw − ∂tu in L2(0, T ;V ′), for any T > 0. (3.20)

Since, for any T > 0, the space
{
w̃ ∈ L2(0, T ;V ), ∂tw̃ ∈ L2(0, T ;V ′)

}
is compactly

imbedded in the space C0([0, T ];H) [38], we also obtain that (wδt) converges strongly
to w in C0([0, T ];H), for any T > 0. In particular, the initial condition w(0) = w0

is satisfied.
Secondly, owing to the definition (2.8) of ∂V,V ′JV , the Euler-Lagrange equation of

the minimization problem (3.2)-(3.3) reads

1

δt
(Un+1 − Un) +AUn+1 + ξn+1 = (λun, αψn) + (wn, 0) in V ′,

with ξn+1 ∈ ∂V,V ′JV(U
n+1). This can be rewritten

∂tUδt +AU δt + ξδt = (λuδt, αψδt
) + (wδt, 0) in L

2(0, T ;V ′), (3.21)

for any T > 0, where

ξδt(t)
def
= ξn+1 ∈ ∂V,V ′JV(U δt(t)) for all t ∈ [nδt, (n+ 1)δt) (n ∈ N). (3.22)

We set T > 0 and we introduce the maximal monotone operator BT in L2(0, T ;V)×
L2(0, T ;V ′) defined for all (U, ξ) ∈ L2(0, T ;V) × L2(0, T ;V ′) by [7, Exemple 2.3.3.
p.25 ]

ξ ∈ BT (U) ⇐⇒ ξ(t) ∈ BTU(t) for a.e. t ∈ (0, T ).

Since BT is a maximal monotone operator [7, p.22], for all (U, ξ) ∈ L2(0, T ;V) ×
L2(0, T ;V ′), we have

ξ ∈ BT (U) ⇐⇒
∫ T

0
⟨ξ(t)− ξ̃(t), U(t)− Ũ(t)⟩Vdt ≥ 0 (3.23)

for all (Ũ , ξ̃) ∈ L2(0, T ;V)× L2(0, T ;V ′) such that ξ̃ ∈ BT (Ũ).

Let (Ũ , ξ̃) ∈ L2(0, T ;V) × L2(0, T ;V ′) such that ξ̃ ∈ BT (Ũ). From (3.22)-(3.23),
we deduce that

Iδt
def
=

∫ T

0
⟨ξδt − ξ̃, U δt − Ũ⟩Vdt ≥ 0. (3.24)

Equation (3.21) yields

Iδt =

∫ T

0
⟨−∂tUδt −AU δt + (λuδt, αψδt

) + (wδt, 0)− ξ̃, U δt − Ũ⟩Vdt.
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We write Iδt = I1δt + I2δt + I3δt where

I1δt = −
∫ T

0
⟨∂tUδt, U δt − Ũ⟩Vdt,

I2δt = −
∫ T

0
⟨AU δt, U δt − Ũ⟩Vdt,

I3δt =

∫ T

0
⟨(λuδt, αψδt

) + (wδt, 0)− ξ̃, U δt − Ũ⟩Vdt.

Arguing as in (3.17), we see that∫ T

0
∥Uδt − U δt∥

2
H dt ≤ 4δt2C.

Using that (Uδt) converges strongly to U in C0([0, T ];H), we obtain that (U δt)
converges strongly to U in L2(0, T ;H). Thus, ((λuδt, αψδt

)) converges strongly to

(λu, αψ) in L2(0, T ;V ′). Similarly, (wδt) converges strongly to w in L2(0, T ;H). This
shows that

I3δt →
∫ T

0
⟨(λu, αψ) + (w, 0)− ξ̃, U − Ũ⟩Vdt, (3.25)

as δt→ 0.
Next, we write

I1δt = −
∫ T

0
⟨∂tUδt, Uδt⟩Vdt−

∫ T

0
⟨∂tUδt, U δt − Uδt⟩Vdt+

∫ T

0
⟨∂tUδt, Ũ⟩Vdt.

In the right-hand side above, the last integral tends to
∫ T
0 ⟨∂tU, Ũ⟩Vdt and the second

integral tends to 0 thanks to the Cauchy-Schwarz inequality and the estimates (3.15)
and (3.17). The first integral reads (see, e.g. [39, Lemma 1.2, Ch. III])∫ T

0
⟨∂tUδt, Uδt⟩Vdt =

1

2
∥Uδt(T )∥2H − 1

2
∥Uδt(0)∥2H ,

and this tends to

1

2
∥U(T )∥2H − 1

2
∥U(0)∥2H =

∫ T

0
⟨∂tU,U⟩Vdt,

owing to the strong convergence of (Uδt) in C
0([0, T ],H). Thus,

I1δt → −
∫ T

0
⟨∂tU,U − Ũ⟩Vdt, (3.26)

as δt→ 0.
The term I2δt reads

I2δt = −
∫ T

0
⟨AUδt, Uδt⟩Vdt+

∫ T

0
⟨AUδt, U⟩Vdt.

The second integral in the right-hand side above tends to
∫ T
0 ⟨AU,U⟩Vdt, and by

lower semi-continuity of the semi-norm in the Hilbert space L2(0, T ;V), we have∫ T

0
⟨AU,U⟩Vdt ≤ lim inf

δt→0

∫ T

0
⟨AUδt, Uδt⟩Vdt.
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Thus,

−
∫ T

0
⟨AU,U − Ũ⟩Vdt ≥ lim sup

δt→0
I2δt. (3.27)

Summing up (3.24)-(3.27), we have proved that∫ T

0
⟨−∂tU −AU + (λu, αψ) + (w, 0)− ξ̃, U − Ũ⟩Vdt ≥ 0.

From (3.23), we deduce that ξ ∈ BT (U) where

ξ = −∂tU −AU + (λu, αψ) + (w, 0) in L2(0, T ;V ′).

Recalling the definition of BT , this reads

∂tU(t) +AU(t) + ξ(t) = (λu(t), αψ(t)) + (w(t), 0) in V ′,

with ξ(t) ∈ ∂V,V ′J(U(t)), for a.e. t ∈ (0, T ). This relation is valid for any T > 0. It
shows that (U,w) is the energy solution to problem (1.1). By uniqueness of the energy
solution, the whole sequence (Uδt, wδt) tends to (U,w). The proof is complete. �

4. Analysis and numerical approach for a singular 1d stationary case

In this section, we focus on the following boundary value problem in (−L,L)
(0 < L < +∞): for a given K ≥ 0, find the function y which solves{

−y′′ + f(y) = 0 in (−L,L),
y′(−L) = K, y′(+L) = K,

(4.1)

where f is the (singular) logarithmic potential

f(s) = ln

(
1 + s

1− s

)
, s ∈ (−1, 1). (4.2)

This problem was pointed out as a counter-example in [34]. It can be seen as a
stationary case of the Caginalp system (1.1) for Ω = (−L,L) by choosing w = 0,
y = u, λ = α = 0 and g(s) = −K if x = +L, g(s) = +K if x = −L (since Ω is an
interval, the Laplace-Beltrami operator does not appear in this case).

4.1. Analysis. For small K, problem (4.1) has a (unique) classical solution, but
for large K, this is no longer the case (cf. Proposition 4.2) and it is necessary to
introduce another notion of solution (note that for K ≤ 0, the situation is similar
since −y is a solution of the ODE). In the spirit of our scheme, we consider energy
solutions.

More precisely, assume that y is a classical solution of (4.1). Then, on multiplying
the first equation by a test function φ and integrating by parts, we find that y
satisfies∫ L

−L
y′(x)φ′(x)dx−Kφ(+L) +Kφ(−L) +

∫ L

−L
f(y(x))φ(x)dx = 0, (4.3)

for all φ ∈ C1([−1, 1]). Thus, y is a critical point of the functional

EK(z) :=

∫ L

−L

(z′)2

2
+ F (z)dx−Kz(+L) +Kz(−L), (4.4)
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where

F (s) =

∫ s

0
f(σ)dσ = (1 + s) ln(1 + s) + (1− s) ln(1− s), s ∈ [−1, 1].

Note that F is extended by continuity on [−1, 1].
Let us introduce the set

C =
{
z ∈ H1(−L,L) : z(x) ∈ [−1, 1] for all x ∈ [−L,L]

}
,

which is a closed convex subset of H1(−L,L). We have used the continuous Sobolev
imbedding (see, e.g., [8])

H1(−L,L) ⊂ C0([−L,L]). (4.5)

It is easily seen that EK is continuous, coercive and strictly convex on C. Moreover,
EK is symmetric in the sense that EK(x 7→ −z(−x)) = EK(z). Thus, we have (see,
e.g. [22]):

Proposition 4.1. The functional EK has a unique minimizer yK on C, which is
odd. If y ∈ C2([−L,L]) is a classical solution of (4.1), then y = yK .

Proof. We prove that EK is coercive, i.e. EK(z) → +∞ as ∥z∥H1 → +∞ with z ∈ C
(the other claims are immediate). We have

f ′′(s) =
2

1− s2
≥ 2, s ∈ (−1, 1). (4.6)

Thus, f(s) ≥ 2s for s ∈ [0, 1) and F (s) ≥ s2 for s ∈ [−1, 1]. This shows that

Ek(z) ≥
1

2
∥z∥2H1(−L,L) −Kz(+L) +Kz(−L).

The linear terms are controlled by the quadratic term thanks to the Sobolev imbed-
ding (4.5). This proves that EK is coercive. �

On studying the phase portrait of (4.1), the following result can be proved.

Proposition 4.2. There exists K+ > 0 such that for 0 ≤ K < K+, problem (4.1) has
a unique solution y ∈ C2([−L,L]) and for K > K+, problem (4.1) has no classical
solution. For K = K+ problem (4.1) has a unique solution y+ ∈ C2((−L,L)) ∩
C1([−L,L]) which satisfies y+(−L) = −1 and y+(+L) = +1.

Proof. We have already seen that any classical solution y is equal to yK . Conversely,
we note that any odd solution satisfies y(0) = 0, so we consider the maximal solution
of

−y′′ + f(y) = 0 (4.7)

with initial condition y(0) = 0 and y′(0) > 0 (the case y′(0) < 0 is obtained by
symmetry and for y′(0) = 0, the solution is y ≡ 0 on (−∞,+∞)). By symmetry,
any such solution is odd and defined on a maximal interval (−T+, T+).

On multiplying (4.7) by y′ and integrating, we find that (y′)2/2 − F (y) = C for
some positive constant C. Since y′(0) > 0, y is increasing on [0, T+) and y′ =√
2C + F (y) on [0, T+). Thus, T+ is defined by∫ 1

0

dz√
2C + F (z)

= T+.
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This shows that T+ is a continuous and (strictly) decreasing function of C, with

lim
C→0+

T+ = +∞ and lim
C→+∞

T+ = 0.

Therefore, there exists a unique CL ∈ (0,+∞) such that T+ = L. This defines the
solution y+ ∈ C2((−L,L)) ∩ C1([−L,L]) with K+ = y′+(L) and it shows that for
0 < C < CL, the corresponding solution y is defined on [0, T+) which contains [0, L]:
we have a classical solution of (4.1). For C > CL, T

+ < L and we have no classical
solution of (4.1). �
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Figure 1. Solution yK for different values of K

4.2. Numerical resolution. In Figure 1, we have computed numerically the solu-
tion

yK = argmin
z∈C

EK(z)

whose existence is asserted by Proposition 4.1. We have used a finite difference
approximation with a uniform subdivision xi = −L + ih (i = 0, 1, . . . , 2M) of
[−L,L] with step size h = L/M . A discrete version of the energy EK(z) with the
values (zi)0≤i≤2M approximating z(xi) was used.

We have chosen the parameters L = 2, M = 20, and the minimization was per-
formed with the Matlab® nonlinear programming solver fmincon with constraints
−1 ≤ zi ≤ 1. This solver finds the minimum of a function with inequality constraints
and does not require the gradient of the function (the gradient would be singular for
zi = ±1).

We have found that the critical value K+ in this case is approximately K+ = 1.7.
For K < K+, the solution yK is regular (Proposition 4.1) and for K > K+, we have
yK = yK+ (Theorem 4.3).

Nonlinear solvers for the minimization of a function are known to be more efficient
if a gradient is available (see, e.g., [10]). In view of the 2d computations, we have
therefore computed numerically the solutions of the two regularized problems

yεK = argmin
z∈H1(−L,L)

Eε
K(z) (4.8)
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Figure 2. Solutions of the regularized problem without constraint
(yεK , left) and with constraint (ỹεK , right)

and

ỹεK = argmin
z∈C

Eε
K(z). (4.9)

In this case, we replace f by the regularization

f ε(s) =


f(s) if |s| ≤ 1− ε,

f(1− ε) if s > 1− ε,

f(−1 + ε) if s < −1 + ε,

(4.10)

which is continuous and odd on R. We set

F ε(s) =

∫ s

0
fε(σ)dσ, s ∈ R, (4.11)

which is of class C1 on R and even. The energy function Eε
K is defined as EK

(cf. (4.4)) with F replaced by F ε. As a consequence, Eε
K is of class C1 on H1(−L,L).

Moreover, Eε
K is coercive and strictly convex on H1(−1, 1), so that the minimizers

yεK and ỹεK are well-defined and unique. The function yεK solves a nonconstrained
convex optimization problem, whereas ỹεK solves a constrained convex optimization
problem.

For the numerical simulations presented in Fig. 2, we have set K = 3 which
corresponds to a singular case for yK (cf. Fig. 1); this singular solution yK , which
corresponds formally to the case ε = 0, is represented in black in Fig. 2 (left and
right).

The solution yεK is represented for several values of ε on the left of Fig. 2. It
was computed by a finite difference approximation of problem (4.8) as previously,

with a uniform subdivision of step size h = 2L/2M for M = 20. The Matlab®

minimization solver fminunc was used. As ε gets closer to 0, we observe that yεK
converges to yK . However, the speed of convergence is slow.

In contrast, in Fig. 2 (right), we have computed the solution ỹεK for a reasonable
value ε = 0.1, and there is no visual difference between yεK and yK . In comparison
with the calculation of yK , the fmincon solver could be used efficiently for ỹεK with a
much larger number of unknowns, namely 201 (corresponding to M = 100), thanks
to the gradient available for the regularized discrete problem.



18 FRANCK DAVHYS REVAL LANGA AND MORGAN PIERRE

4.3. Interpretation of the singularity. Let K > K+. Formally, we have yεK →
yK as ε → 0. We also have yK = yK+ (Theorem 4.3). This means that (yεK)′ goes
from K+ to K on a small interval near x = +L, and at the limit ε = 0, y′K has a
discontinuity at x = +L, which jumps from K+ to K. Thus, we expect that y′′K has
a Dirac measure at x = +L (and also at x = −L, by symmetry). We make this
formal argument rigorous in Corollary 4.4.

For this purpose, we use the notion of variational solution which was proposed by
Miranville and Zelik [34] in the context of the Cahn-Hilliard equation. First assume
that y is a classical solution of (4.1). On replacing φ by y − φ in (4.3), we have∫ L

−L
y′(y′ − φ′)dx+

∫ L

−L
f(y)(y − φ)dx = K[y(+L)− φ(+L)]

−K[y(−L)− φ(−L)],
for all φ ∈ H1(−L,L). The monotonicity of f yields∫ L

−L
f(y)(y − φ)dx ≥

∫ L

−L
f(φ)(y − φ)dx.

We also note that ∫ L

−L
y′(y′ − φ′)dx ≥

∫ L

−L
φ′(y′ − φ′)dx.

Thus, if y is a regular solution of (4.1), we have∫ L

−L
φ′(y′ − φ′)dx+

∫ L

−L
f(φ)(y − φ)dx ≤ K[y(+L)− φ(+L)]

−K[y(−L)− φ(−L)], (4.12)

for every test function φ.
We say that y is a variational solution to problem (4.1) if y ∈ H1(−L,L),

−1 < y(x) < 1 for all x ∈ (−L,L), f(y) ∈ L1(−L,L)
and (4.12) holds for all φ ∈ H1(−L,L) such that f(φ) ∈ L1(−L,L).

From this definition, we may deduce:

Theorem 4.3. Let K+ and y+ be as in Proposition 4.2. Then for K ≥ K+, we
have yK = y+.

Proof. Since y+ is a regular solution of problem (4.1) for K = K+, it is also a
variational solution, henceforth it satisfies (4.12), that is∫ L

−L
φ′(y′+ − φ′)dx+

∫ L

−L
f(φ)(y+ − φ)dx ≤ K+[y+(+L)− φ(+L)]

−K+[y+(−L)− φ(−L)],(4.13)
for all φ ∈ H1(−L,L) such that f(φ) ∈ L1(−L,L). If φ is a test function, then φ is
continuous on [−L,L] by (4.5) and φ(x) ∈ [−1, 1] for all x ∈ [−L,L]. Thus, we have

[y+(+L)− φ(+L)] = 1− φ(+L) ≥ 0

and
−[y+(−L)− φ(−L)] = −[−1− φ(−L)] ≥ 0.

This shows that (4.13) also holds if we replace K+ by any value K ≥ K+. In other
words, y+ is a variational solution of problem (4.1) for all K ≥ K+. The variational
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solution is unique [15], and it can also be shown by a regularization process that the
energy solution yK is also the variational solution (see Theorem 2.5). Thus, yK = y+
for all K ≥ K+. �

As a consequence, we have (compare with (4.3)):

Corollary 4.4. Let K ≥ K+. Then yK satisfies∫ L

−L
y′K(x)φ′(x)dx−Kφ(+L) +Kφ(−L) + ⟨µK , φ⟩C0([−L,L]) = 0,

for all φ ∈ H1(−L,L), where µK ∈ [C0([−L,L])′ is the measure defined by

µK = f(yK) + (K −K+)δ+L − (K −K+)δ−L.

Here, δ±L denotes the Dirac measure at x = ±L. We recall that f(yK) ∈
L1(−L,L).

Proof. Since yK = y+ and y+ is a classical solution of problem (4.1), equation (4.3)
shows that∫ L

−L
y′K(x)φ′(x)dx−K+φ(+L) +K+φ(−L) +

∫ L

−L
f(yK(x))φ(x)dx = 0,

for all φ ∈ H1(−L,L). The claim follows. �

Remark 4.5. The apparition of a Dirac measure has been analyzed for a closely
related problem in [37]. It can be related to the fact that the maximal monotone
operator involved in this problem is multivalued (cf. (2.8)). Corollary 4.4 shows that
for problem (4.1), the support of the singular part belongs to the boundary of the
domain and corresponds to a discontinuity of the normal derivative of the solution.
The latter phenomenon has been described for the evolutionary 3d Caginalp problem
in terms of the variational solution of the problem in [15, Theorem 5.2].

5. 2d numerical results

We have performed numerical simulations in two space dimension for the Caginalp
system (1.1) on the rectangle Ω = [0, Lx]× [0, Ly] with Lx = 8 and Ly = 4, with pe-
riodic boundary conditions on the left/right sides and dynamic boundary conditions
on the upper/lower sides (this type of domain is also known as a “slab”).

For the space discretization, we used a finite element approximation with piecewise
continuous (P 1) finite elements both for the order parameter u and for the temper-
ature w. The rectangle was divided into 6400 triangles obtained by dividing the
rectangle into 3200 squares of side h = Lx/80 = Ly/40 = 1/10, each square being it-
self divided into two right-angled isosceles triangles along the south-west/north-east
diagonal.

In problem (1.1), we chose the logarithmic function f defined by (1.2) and the
parameters were set equal to λ = 3 and α = 0. The function g was set equal to
g(s) = s− β where the constant β will be specified below.

For the time discretization, we used the doubly splitting scheme (3.2)-(3.4) with
a continuous regularization of f , namely the approximation fε given by (4.10). The
convex minimization problem was performed with the constraint that the solution u
takes values in [−1, 1], as in (4.9).
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The s were made with the FreeFem++ software [29]. For the optimization prob-
lem, the Truncated Newton algorithm from the ff-NLopt package was used. It
requires the objective function and its gradient. The algorithm was stopped when
the variation of the objective function was smaller than 1e− 6. The maximal num-
ber of evaluations of the objective function was set to 200 (but it was actually never
reached).

The initial values were w0(x, y) = 0 and

u0(x, y) =

(
0.1 cos

(
4πx

Lx

)
+ 0.05 sin

(
6πx

Lx

))(
1−

(
y

Ly

)2
)

in Ω.

5.1. Numerical validation with a regular solution. For the numerical vali-
dation of our scheme, we used the parameter β = 0.8 in the function g, so that
g(s) = s − 0.8. With this choice, we have g(−1) = −1.8 < 0 < 0.2 = g(1) and the
sign condition (cf. (2.21)) is satisfied. This guarantees that the solution is classical.
We compared the solution obtained by our scheme and the solution of (1.1) com-
puted with the linearly implicit scheme used in [15] (this scheme is implicit for the
linear terms and explicit for the nonlinear terms).

m (cf. time step) 0 1 2 3 4 5

L2-error 0.0240 0.0124 0.0063 0.0032 0.0016 0.0008

ratio 1.94 1.97 1.97 2 2
�

�
�

Table 1. L2-error and ratio of consecutive errors vs time step

Table 1 shows the L2-error between the solution uDS from our doubly splitting
scheme and the solution uLI from the linearly implicit scheme at the final time
T = 0.5. The time step was chosen as dt = T/(10 × 2m) with m ∈ {0, 1, . . . , 5}.
Since both schemes are first order in time, the difference ∥uDS(T ) − uLI(T )∥L2(Ω)

is expected to be first order at most. The ratio of consecutive errors between two
consecutive time steps, which is very close to 2, is consistent with the first order
approximation.

m (cf. time step) 0 1 2 3 4 5

LI scheme 1 2 4 8 16 32
DS scheme 165 262 305 381 511 489

Table 2. Normalized CPU time vs time step for the linearly implicit
(LI) scheme and the doubly splitting (DS) scheme

We point out that for a regular solution, the linearly implicit scheme is much
faster than our doubly splitting scheme. This is illustrated in Table 2, where the
CPU computational time is represented. We used a laptop for which the computation
of uLI(T ) with the time step dt = T/10 takes about 6 seconds. Since the CPU time
depends on the computer, in Table 2, the CPU time is normalized by comparing
every computation to this case (for which the CPU time is therefore set to 1). For
the linearly implicit scheme, when the time step is divided by 2, the CPU time is
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multiplied by 2, as expected. For the doubly splitting scheme, the most greedy part
is the minimization algorithm. The computational time could be reduced by using
a second order method involving the hessian of the objective function and not only
the gradient (in such a case, a C1 regularization of f would be used, yielding a C2

regularization of F ).

Figure 3. Initial condition u0

Figure 4. Solution u(t) at time t = 0.10

Figure 5. Solution u(t) at singular time t = 0.71

5.2. Computation of a singular solution. As a test case for a singular solution,
we choose the same parameters as previously except that g(s) = s − 3. The time
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Figure 6. Stationary solution (u(t) at time t = 5.00)
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Figure 7. Solution y 7→ u(t, x = 2, y) from t = 0 to t = 5.00

step is dt = 0.01. We have g(−1) = −4 < g(1) = −2 < 0 so the sign condition (2.21)
is not satisfied. The solution u reaches the value +1 somewhere on the boundary
at time t = 0.71 and is singular for t ≥ 0.71. The isovalues of u are represented
in Figures 3-6 at times t = 0, t = 0.10, t = 0.71 and t = 5.00 (in these Figures,

the Matlab® software was used for the visualization). We observe that the solution
converges to a singular steady state, which is constant along the x-direction.

In order to visualize the evolution in the y-direction, we have represented in Fig-
ure 7 the solution u on the segment {x = 2} × [0, Ly] as time grows. For this
particular section of u, the value +1 is reached at time t = 0.73. We observe that,
afterwards, u continues to evolve in the bulk, until it reaches a singular steady state.
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