From fluctuating kinetics to fluctuating hydrodynamics: a $\Gamma$-Convergence of large deviations functionals approach - Archive ouverte HAL
Article Dans Une Revue Journal of Statistical Physics Année : 2020

From fluctuating kinetics to fluctuating hydrodynamics: a $\Gamma$-Convergence of large deviations functionals approach

Résumé

We consider extended slow-fast systems of N interacting diffusions. The typical behavior of the empirical density is described by a nonlinear McKean–Vlasov equation depending on ε, the scaling parameter separating the time scale of the slow variable from the time scale of the fast variable. Its atypical behavior is encapsulated in a large N Large Deviation Principle with a rate functional Iε. We study the Γ-convergence of Iε as ε→0 and show it converges to the rate functional appearing in the Macroscopic Fluctuations Theory for diffusive systems.
Fichier principal
Vignette du fichier
main7-Universal.pdf (285.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02309363 , version 1 (09-10-2019)

Licence

Domaine public

Identifiants

  • HAL Id : hal-02309363 , version 1

Citer

Julien Barré, Cedric Bernardin, Raphaël Chétrite, Yash Chopra, Mauro Mariani. From fluctuating kinetics to fluctuating hydrodynamics: a $\Gamma$-Convergence of large deviations functionals approach. Journal of Statistical Physics, 2020, 180, pp.1095-1127. ⟨hal-02309363⟩
145 Consultations
222 Téléchargements

Partager

More