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GAMMA CONVERGENCE APPROACH FOR THE LARGE
DEVIATIONS OF THE DENSITY IN SYSTEMS OF INTERACTING

DIFFUSION PROCESSES

J. BARRÉ, C.BERNARDIN, R. CHÉTRITE, Y. CHOPRA, AND M. MARIANI

ABSTRACT. We consider extended slow-fast systems of N interacting
diffusions. The typical behavior of the empirical density is described
by a nonlinear McKean-Vlasov equation depending on ε, the scaling
parameter separating the time scale of the slow variable from the time
scale of the fast variable. Its atypical behavior is encapsulated in a
large N Large Deviation Principle (LDP) with a rate functional I ε.
We study the Γ -convergence of I ε as ε→ 0 and show it converges to
the rate functional appearing in the Macroscopic Fluctuations Theory
(MFT) for diffusive systems.
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1. INTRODUCTION

We consider a system of N ≥ 1 interacting particles (e.g. economical
agents, living or artificial entities ..). The configuration of a particle la-
beled by i is described by two coordinates: a first one (called position
for convenience) qi ∈ Rn and a second one (called internal degree of
freedom) θi living in some m-dimensional Riemannian manifold (M ,g)
whose Riemannian measure is denoted by µg. The gradient 1 on M is
denoted by ∇θ and the divergence by ∇θ · . The equations of motion are
given by Fisk-Stratonovich stochastic differential equations (SDE’s):

¨

dqi = ε V (θi)d t,

dθ i =
�

B − 1
Ni

∑

j∈Vi
F(·,θ j)

�

(θi) d t +
p

2
∑`

a=1 Aa(θi) ◦ dW a
i (t).
(1.1)

Here, V := V (θ ) is a vector field onRn; B, A1, . . . , A` are `+1 vector fields
onM (` is arbitrary); and for each θ ′ ∈M , F := F(·,θ ′) is a vector field

1In local coordinates, with Einstein’s convention, for any smooth function f and any
vector field X := X k∂θk

, ∇θ f = gk`∂θk
f ∂θ` and ∇θ · [X k∂θk

] = 1p
G
∂θk
(X kpG) where

G = det(gk`). We have also then the integration by parts formula:
∫

dµg X (∇θ f ) =
−
∫

dµg (∇θ · X ) f .
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onM deriving from a potential W (·,θ ′):

F(θ ,θ ′) =∇θW (θ ,θ ′).

All these fields are assumed to be smooth. The set Vi is the set of labels
of particles interacting with particle i in a neighborhood of radius R> 0:

Vi := { j ∈ {1, . . . , N} ; | qi − q j | ≤ R}

and Ni is the number of particles in Vi. The Wi := (W 1
i , . . . , W m

i )’s are
independent standard m-dimensional Wiener processes simulating the
interaction with some external environment.

This class of models includes several types of active matter models (see
for instance [84, 7, 34, 21, 37]) born after the seminal work of Vicsek
et al.[96]; in these models M is often S1, but may be S2 or SO3. Note
however that (1.1) is sufficiently general to have applications in other
fields (for example as simplified Lagrangian stochastic model [13]). A
particular case of interest in active matter [84] is the two dimensional
(n = 2) model with M = {eiα ; α ∈ [−π,π)} the unit circle equipped
with the trivial metric and

V (eiα) = eiα ∈ R2, W (eiα, eiα′) = cos(α−α′),

A1(e
iα) = 1, `= 1.

A natural multidimensional generalization of this model follows by the
choiceM = Sm the m-dimensional sphere equipped with its natural met-
ric and

W (θ ,θ ′) := −θ · θ ′, V (θ ) := θ ,

where B, Aa are arbitrary and · denotes the usual scalar product in Rm+1.
Hence here the velocity θi of the particle i has a constant norm by hy-
pothesis.

In this work we will consider large systems, i.e. N →∞, as ε→ 0, i.e.
assuming that the qi ’s dynamics is much slower than the θi ’s one. Hence
our model belongs to the class of infinite dimensional slow-fast systems.

A huge amount of work has been devoted to the study of finite dimen-
sional (random or deterministic) slow-fast dynamical systems, of which
(2.1) is only a particular subclass. Hence N is fixed and ε → 0, i.e.
Nε → 0. For these finite-dimensional models, one is interested in the
characterization of the dynamics of the slow variables q(t) ∈ (Rn)N as
ε → 0. Its typical behavior, in the time scale ε−1, is studied by tools of
homogeneization theory [8, 82, 2, 65, 25, 81, 66, 83]. Since the initial
system is random, fluctuations of q(ε−1 t) around its typical behavior q̄(t)
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are also of interest and can be studied theoretically. In particular LDP 2

exist in the form [57, 95, 72, 16]

P
�

q(ε−1 t)≈Q(t) on [0, T]
�

∼ exp
�

−ε−1J N
T (Q)

�

(1.2)

where J N
T is an explicit rate functional vanishing for Q = q̄.

On the other hand, for fixed ε, one can be interested in the descrip-
tion of the dynamics (in q and θ) as N →∞, i.e. Nε→∞, through the
study of the empirical density f εN (q,θ , t). The dynamics becomes thus
infinite-dimensional and the typical behavior of f εN (q,θ , t) is described
by f ε(q,θ , t) which is solution of a (kind of) McKean-Vlasov equation
[75, 76, 44, 70, 27, 59, 79, 12, 60, 91, 77, 19]. Fluctuations (central
limit theorems or large deviations principles) around this typical behav-
ior have been investigated previously [92, 30, 71, 31, 32, 26, 55, 18, 54,
4, 17, 78, 86, 50, 24]. More explicitly a large deviations principle for f εN
holds3:

P
�

f εN (q,θ , tε−2)≈ g(q,θ , t) on [0, T]
�

∼ exp(−NI εT (g)) (1.3)

where the rate functional I εT is of course vanishing if g(·, t)≡ f ε(·, tε−2)
on the time interval [0, T].

In this paper we are interested in the behavior of the large deviations
functional I εT for the empirical density 4 when ε → 0. From a tech-
nical point of view the study of this convergence of functionals has to
be accomplished in the Γ -convergence framework [14, 38]. Roughly
speaking we show, under a certain number of assumptions on the model,
that I εT converges as ε → 0 to a functional IT whose finite values are
supported on density functions g which have a local equilibrium form:
g(q,θ , t) = ρ(q, t)G(θ ) where G(θ ) is the unique stationary measure –
in the fast dynamics variables θ – of the McKean-Vlasov equation (i.e.
when ε = 0), while ρ(q, t) is arbitrary and describes the potential time
dependent density profiles (in q) available by the slow dynamics of the
qi ’s. Hence, in some sense, we establish some averaging (or homo-
geneization) principle at the level of large deviations. The limiting large
deviations functional IT takes a form similar to the one appearing in
the context of the Macroscopic Fluctuations Theory [9, 10] for diffusive
systems, and is fully explicit. In particular, the functional IT vanishes

2See [46, 47, 48, 57, 53, 45, 40, 41, 93] for a general introduction about LDP.
3Sometimes it is also necessary to perform first a change of frame, see (2.12)
4While the interaction is mean field we will send R → 0 after N →∞ so that the

binary interaction will become local in space, but this is not a fundamental aspect of
our work, even if the results would have to be modified.
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when g(q,θ , t) = ρ(q, t)G(θ ) where ρ is the solution of a linear diffu-
sion equation which can also be guessed by a Chapman-Enskog expan-
sion [23] of the solution f ε of the McKean-Vlasov equation mentioned
above. Our limiting large deviation functional IT is also consistent with
a Chapman-Enskog analysis of the so-called “Dean equation" (fluctuating
McKean-Vlasov equation at finite N). We point out that the active matter
systems, which are one of the motivations of this work, usually feature
a moderately large number of individual units (typically much smaller
than for a standard fluid for instance); a precise description of the finite
N fluctuations, as provided here at the large deviation level, may then
be particularly important. The main limitation of our work is the crucial
assumption that the equilibrium state G is unique while in many cases
of interest (and in particular in active matter models) it is not true. A
very interesting question is therefore to know how to extend our results
in these cases.

1.1. Plan. The paper is organized as follows. In Section 2 we present
the model and describe its kinetic limit, as well as its approximated hy-
drodynamics when the spatial dynamics is much slower than the angular
dynamics, by relating it to the classical Chapman-Enskog approach. We
then introduce the finite size fluctuations kinetic equation that we rein-
terpret in the large deviation (LD) theory framework. Our first main
result is then stated in Section 3 and establishes a LD principle with an
explicit rate function for the density of particles in the limit where the
spatial dynamics is much slower than the angular dynamics. Since the
limit involves convergence of rate functionals we have to use the ap-
propriate notion of Γ -convergence. The proof of this result is given in
Section 4. The paper is concluded by several appendices.

2. FROM THE MICROSCOPIC MODEL TO A FLUCTUATING HYDRODYNAMIC

EQUATION

2.1. Microscopic models. While our main result (Theorem 1) could
probably be extended for the model given by (1.1) under some assump-
tions on the vector fields V , B, F and Aa’s, we choose for technical reasons
(in particular ones leading to Appendix B and Appendix C where our
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‘dissipative assumption’ (3.11) can be checked) to focus only on ‘Aa’s-
gradient dynamics ’, i.e.










dqi = ε V (θi)d t,

dθ i = −
∑m

a=1

�

g
�

Aa , ∇θU + 1
Ni

∑

j∈Vi
F(·,θ j)

�

Aa

�

(θi) d t

+
∑m

a=1

�

(∇θ · Aa)Aa

�

(θi) d t +
p

2
∑m

a=1 Aa(θi) ◦ dW a
i (t),

(2.1)
where we recall that g is the Riemannian metric onM . We also assume
thatM is compact. The presence of the spurious drift term

∑m
a=1[∇θ ·

Aa]Aa is here to ensure that the dynamics of the θi ’s is reversible 5 with re-
spect to the Gibbs measure e−U ,U (θ )≡

∑

i

�

U (θ ) + 1
2Ni

∑

j∈Vi
W
�

θ ,θ j

�

�

when R=∞, and the potential W is symmetric, i.e. W (θ ,θ ′) =W (θ ′,θ ).
The interaction is thus regulated by A(θ ) := (A1(θ ), . . . , Am(θ )) that we
assume to satisfy: for any smooth function f (θ ) onM ,

m
∑

a=1

∫

M
dµg(θ ) (Aa f )2(θ ) = 0 implies f ≡ 0.

This condition is here to ensure a non-degenerate diffusivity in the θ
variable. We also assume a non-degeneracy condition for V :

Span {∇θV (θ ) ; θ ∈M}= Rn. (2.2)

For the convenience of the reader we will write explicitly the proof
for M := (−π,π] the unit torus equipped with the trivial metric but
we will state all our results in the general case presented above. The
interested reader will check easily that our proofs can be extended mu-
tatis mutandis to the models described by (2.1). In this simpler case, the
equations of motion (2.1) are thus given by the Fisk-Stratonovich SDE’s
(with m= 1 and by defining A1(θ ) =

p

Γ (θ )∇θ) which can be translated
as the Ito SDE’s:

dqi = ε V (θi)d t,

dθ i = −[Γ∂θU](θi)d t −
1
Ni

∑

j∈Vi

Γ (θi)F(θi,θ j)d t +
Æ

2Γ (θi) dWi(t)

5This reversibility means that if L is the Markovian generator with q frozen acting
on function f onM as

L( f ) =
m
∑

a=1

eU∇θ .
�

e−U g
�

∇θ f , Aa

�

Aa

�

,

then for any function f , h onM the integral
∫

M dµg e−U f Lh is symmetric in f , h.
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with the effective potential

U(θ ) := U(θ )− log Γ (θ ).

SinceM := (−π,π] is the unit torus all these fields can be seen as 2π-
periodic functions in the internal degree of freedom variable.

2.2. Thermodynamic limit.

2.2.1. Kinetic equation. Let us first fix ε > 0. In the thermodynamic
limit N → ∞ and then local spatial limit R → 0, at the kinetic level,
the time dependent density f ε(q,θ , t) of the system is described by a
kinetic equation (see Appendix A for a formal derivation and [13] for
a rigorous derivation in a similar context) which is a kind of Mc-Kean-
Vlasov equation. More exactly it is an integro (in θ)-differential (in q−θ)
non-linear Fokker-Planck equation [75, 76, 44, 70, 27, 59, 79, 12, 60, 91,
77, 19]:

∂t f ε = ∂θ

�

Γ

�

∂θU +
F( f ε)

ρε

�

f ε + Γ ∂θ f ε
�

− εV · ∇ f ε

:= D f ε( f
ε)− εT ( f ε)

(2.3)

with F( f ) meaning

F( f )(q,θ ) :=

∫ π

−π
dθ ′ F(θ ,θ ′) f (q,θ ′) dθ ′,

and

ρε(q) := Π( f ε)(q) :=

∫ π

−π
f ε(q,θ ′)dθ ′.

Here the linear dissipative operator D f and the linear transport operator
T are defined for all function g by

D f (g) := ∂θ

�

Γ

�

∂θU +
F(g)

Π(g)

�

g + Γ ∂θ g

�

, (2.4)

T (g) := V · ∇g.

2.2.2. Local equilibiria. The fast dynamics (ε = 0) is given by

∂t f = D f ( f ). (2.5)

The time asymptotic stationary solutions fle of (2.5) are called local equi-
libria. These local equilibria are studied in Appendix B where it is shown
that they take the form fle(q,θ ) = ρ(q)Gρ(q)(θ ) where

ρ(q) :=

∫ π

−π
dθ fle(q,θ )
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and G := Gρ is a solution of

[∂θU + F(G)]G + ∂θG = 0. (2.6)

with the condition
∫ π

−π
dθG(θ ) = 1.

In the sequel we restrict our study to the case where we have only one
solution to this equation that we denote by G. Then all local equilibrium
fle is in the form

fle(q,θ ) = ρ(q) G(θ )

where G > 0 is unique and fixed and ρ ≥ 0 is arbitrary. For generic po-
tentials U and W , it is difficult to precise exactly under which conditions
this occurs. However, as shown in Appendix B, if the interaction poten-
tial W is sufficiently small, this is the case. A detailed study of the the
set of local equilibria for related McKean-Vlasov models can be found for
example in [44, 27, 12, 22, 94, 20, 35].

In the following, the expectation of f with respect to G is written
〈 f 〉G and the corresponding scalar product between functions f and g
by 〈 f , g〉G =

∫ π

−π f gG(θ )dθ .

2.2.3. The hydrodynamic limit via Chapman-Enskog expansion: Transport
equation and Diffusion equation. We now send ε to 0 and look at the
density in the long time scale tε−1:

f̃ ε(q,θ , t) = f ε(q,θ , tε−1). (2.7)

Consider the particle density

ρ̃ε0(q, t) =

∫ π

−π
f̃ ε(q,θ , t)dθ .

When ε→ 0, we have that (ρ̃ε0)ε converges to ρ̃0 solution

∂tρ̃0 + 〈V 〉G · ∇qρ0 = 0. (2.8)

We can push forward the expansion and a fairly standard Chapman-
Enskog expansion [23, 52, 69] (see Appendix D.1) gives the following
approximated diffusion equation for the density:

∂tρ̃
ε
0 + 〈V 〉G · ∇ρ̃

ε
0 − ε∇ ·D∇ ρ̃

ε
0 = O(ε2) (2.9)

where the symmetric matrix D of size n is given by (3.4).
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2.3. Finite size fluctuations and large deviations around the kinetic
equation.

2.3.1. Fluctuating kinetic equation. When finite N fluctuations are taken
into account, beyond the ‘law of large number’ (2.3), we obtain in the
time scale tε−1 (like in (2.7)) the very formal weak noise SPDE:

∂t f̃ ε = ε−1∂θ

�

Γ

�

∂θU +
F( f̃ ε)

ρ̃ε

�

f̃ ε + Γ ∂θ f̃ ε
�

− V · ∇ f̃ ε

+

√

√ 2
Nε
∂θ

�
q

Γ f̃ ε η
�

.

(2.10)

Here η := η(q,θ , t) is a standard Gaussian noise δ-correlated in q and θ ,
i.e. white in these variables. We rewrite the fluctuating kinetic equation
as

∂t f̃ ε +T ( f̃ ε) = ε−1D f̃ ε( f̃
ε) + (εN)−1/2N

�q

Γ f̃ ε
�

(2.11)

whereN (g) :=
p

2∂θ (η g) is the noise operator. Recall (2.8) and (2.9).
It is then natural to look at the fluctuating kinetic equation at diffusive
time scale in the frame defined by the transport equation (2.8):

f̄ ε(q,θ , t) := f̃ ε(q+ tε−1〈V 〉G,θ , tε−1). (2.12)

which is solution of

ε∂t f̄ ε +T0( f̄
ε) = ε−1D f̄ ε( f̄

ε) + N−1/2N
�
q

Γ f̄ ε
�

, (2.13)

where the centered transport operator is defined for any function g by

T0(g) := V · ∇g (2.14)

with the vector field V defined by

V (θ ) = V (θ )− 〈V 〉G. (2.15)

Equation (2.10), (2.11), (2.13) are sometimes called “Dean equation"
[33] 6. For a formal derivation, see Appendix D.2.

2.3.2. Fluctuating hydrodynamic equation. It is tempting to extend the
Chapman-Enskog expansion seen previously to pass from a kinetic equa-
tion to a hydrodynamic equation as ε→ 0 in the context of the fluctuat-
ing kinetic equation in order to get a fluctuating hydrodynamic equation.
This approach can be formally carried on, see Appendix D.3. However,
at the difference of the (non fluctuating) Chapman-Enskog expansion
which is in some cases under good mathematical control (see for instance
[88] for a review on the fluid limits of the Boltzmann equation), there

6But it appeared previously in [31] (see equation (0.8)).
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are serious difficulties with such approach when we take into account
the finite size fluctuations.

Indeed, the mathematical status of the Dean equation is dubious: even
for finite N , it is difficult to make sense of the equation, from a rigorous
point of view. By contrast, the large deviation principle that we develop
in the next section has a clear meaning and is hence a safer starting
point. Moreover, it provides interesting quantitative informations about
the macroscopic evolution of the system.

3. MAIN RESULT: Γ - CONVERGENCE OF THE RATE FUNCTION IN THE LIMIT

ε→ 0

Before stating the main result of this paper we need to introduce a
theoretical framework and some notation.

3.1. Preliminary on H−1 norms and Γ -convergence. We first recall
some basic facts about the notion of Γ -convergence and H−1-norms.

The notion of Γ -convergence is a powerful notion to study limiting be-
havior of variational problems depending on some parameter, say ν. If
we aim to study the asymptotic behavior of infx Fν(x) as ν→ 0, a nat-
ural but usually intractable strategy consists to compute a minimizer xν

and to study the limit of Fν(xν). Instead, Γ -convergence avoids a direct
computation of xν and provides a framework to approximate the fam-
ily of variational problems infx Fν(x) by an effective variational problem
infx F(x) where the functional F is the “Γ -limit" of the functionals (Fν)ν.
In many cases, even if F̃(x) = limν→0 Fν(x) exists for any x , the Γ -limit
F does not coincide with F̃ , and while infx Fν(x) converges to infx F(x),
it is not true that infx F(x) = infx F̃(x). We refer the reader for example
to [14, 38] for more informations and various examples. The connec-
tion between Γ -convergence and LDP problems is studied for example in
[74, 49].

Definition 1. A sequence of functional Fν : E → R defined on some topo-
logical space E Γ -converges to F : E→ R as ν→ 0 if

1. for any x ∈ E and any sequence xν → x, limµ→0 infν≤µ Fν(xν) ≥ F(x)
(Γ -liminf inequality);

2. there exists a sequence xν→ x such that limµ→0 supν≤µ Fν(xν) ≤ F(x)
(Γ -limsup inequality).

As we will see below the Large Deviations Functionals studied in this
paper are expressed in terms of some weighted H−1 norms.
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Definition 2. Let Ω ⊂ Rd be an open subset of Rd and χ : Ω → S+d (R)
a function taking values in the set of positive definite symmetric matrices.
The square of the χ weighted H−1-norm of a scalar function g : Ω→ R is
defined by

‖g‖2
−1,χ = inf

c

�∫

Ω

c ·χ−1c dω ; ∇ · c = g

�

(3.1)

where · is the usual scalar product on Rd and the infimum is carried over
all smooth vector fields (called controls) c : Ω → Rd . Alternatively it can
be expressed by

‖g‖2
−1,χ = 2 sup

ϕ

�∫

Ω

gϕdω− 1
2

∫

χ∇ϕ · ∇ϕ dω

�

(3.2)

where the supremum is now taken over all smooth scalar functions ϕ : Ω→
R.

Since we want to study the Γ -limit of the rate functional (3.3) defined
below in terms of weighted H−1-norms (3.5), the sup (resp. inf) repre-
sentation will be useful to get the Γ -liminf (resp. the Γ -limsup).

3.2. Kinetic large deviation functional. We recall that we restrict our
study to the case for which the set of local equilibria are all in the form
(q,θ )→ ρ(q)V (θ ).

The LDP with speed N for the empirical density corresponding to the
Dean equation (2.13) on the time window [0, T], was obtained by Daw-
son and Gärtner in the case R=∞ [28, 29], and is given for any function
f := f (q,θ , t) by [92, 30, 71, 31, 32, 26, 55, 18, 54, 4, 17, 78, 86, 50, 24]

I εT ( f ) =
1
4

∫ T

0





Aεf ( f )






2

−1,Γ f
d t (3.3)

where

Aεf ( f ) = ε∂t f + T0( f ) − ε−1D f ( f ) (3.4)

with the h> 0 weighted H−1-norm 7 of the function g := g(q,θ ) defined
by

‖g‖2
−1,h = inf

ϕ

�∫

ϕ2

h
dq dθ , ∂θϕ = g

�

= 2 sup
ϕ

�∫

gϕ dq dθ −
1
2

∫

(∂θϕ)
2 g dq dθ

�

.

(3.5)

7To be precise, the norm defined is the standard quadratic norm in the q variable
and a weighted H−1-norm in the θ variable.
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In the formula above, the test functions ϕ depend on position q and an-
gle θ and h is evaluated at fixed time t.

3.3. Linearized operator. We define the linear operator L f as the lin-
earized operator of the nonlinear operator D f ( f ) at f , i.e.

L f (g) := lim
δ→0

D f +δg ( f +δg)−D f ( f )
δ . (3.6)

In particular, if f = fle, we show in Appendix C that L fle =LG and that
the latter acts on a test function g as

LG(g) = ∂θ (Γ [∂θU + F(G) + ∂θ ]g)

+ ∂θ
�

ΓG
�

F(g)−

 g

G

�

G
F(G)

��

.
(3.7)

Note that thanks to (2.6) we have that

LG(G) = 0. (3.8)

Its adjoint with respect to the standard scalar product w.r.t. dθ is denoted
by L †

G and its action on a test function ϕ is given by

L †
G(ϕ) = −Γ [∂θU + F(G)]∂θϕ + ∂θ (Γ∂θϕ)

−
�

F †(GΓ∂θϕ)−



F(G)Γ∂θϕ〉G
� (3.9)

where F †(θ ,θ ′) := F(θ ′,θ ). Note that

L †
G(1) = 0. (3.10)

In the sequel we will assume the following dissipative condition:

If g is such that

∫

dθ g = 0 then :

∫

dθ G−1LG(g) g ≤ 0

with equality if an only if g = 0.
(3.11)

As shown in the proof of Proposition C.2 this condition implies that

Ker(L †
G) = Span(1), Ker(LG) = Span(G).

Range(L †
G) =

¦

u ; 〈u〉G = 0
©

, Range(LG) =
¦

u ; 〈 u
G 〉G = 0

©

.
(3.12)

Remark 3.1. The equations (3.8) and (3.10) show that in the first line of
(3.12), two inclusions always trivially hold. Moreover, it is easy to show
that the first line of (3.12) implies the second one since we recall that
if A is an operator then the range of A† is equal to the orthogonal of the
kernel of A.
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By (3.12), since V defined in (2.15) is such that 〈V 〉G = 0, there exists
a vector field ψ :=ψ(θ ) = (ψ1(θ ), . . . ,ψn(θ )) ∈ Rn such that

L †
Gψk = −V k (3.13)

and the solution is unique up to some additive constant vector field.

We now introduce two square positive symmetric matrices of size n:
D (diffusivity) and σ (mobility). For any k,` ∈ {1, . . . , n} the entries of
the matrices are defined 8 by:

Dk` =
1
2

�


ψk, V `
�

G
+



ψ`, V k

�

G

�

, (3.14)

and

σk` = 〈∂θψk , Γ ∂θψ`〉G . (3.15)

Remark 3.2. The matrix σ is positive since if x = (x1, . . . , xn) ∈ Rn then

x ·σx =



Γ [∂θ (x ·ψ)]2
�

G
≥ 0

with equality if and only if for any θ , (x ·ψ)(θ ) = 0 (we can always
assume that ψ is centered), which implies by (3.13) that x ·∂θV (θ ) = 0.
This cannot hold if x 6= 0 since we assumed (2.2). The fact that the
matrice D is non-negative is a consequence of (3.11) because

x · Dx = −



L †
G (x ·ψ) , x ·ψ

�

G
= −

∫

dθG−1 LG(x · Gψ) (x · Gψ)≥ 0

with equality if and only if x · Gψ = 0, i.e. x ·ψ = 0 (we can always
assume that Gψ is centered because ψ can be chosen up to a constant
vector field) which as above implies x = 0.

Remark 3.3. For the general model defined by (2.1), the only modifica-
tions are that ∂θ has to be replaced by the gradient ∇θ and (3.4) has to
be replaced by

σk` =
m
∑

a=1

〈g (Aa , ∇θψk) g (Aa , ∇θψ`)〉G .

8For D, the formulas give the same results if ψi is replaced by ψi + Ci where Ci is
an arbitrary constant.
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3.4. Statement of the result. We can now state our main result.

Theorem 1. Assume the dissipative condition (3.11) (and hence (3.12)).
Then, as ε→ 0, the rate functional I εT in (3.3) Γ -converges to IT given by

IT ( f ) =







1
4

∫ T

0
‖∂tρ −∇ ·D∇ρ‖

2
−1,ρσ d t

if f (q,θ , t) = fle(q,θ , t) = ρ(q, t)G(θ ),
+∞ otherwise,

(3.16)
where the matrices D and σ are the matrices given by (3.4) and (3.4).

Proof. This result is proved in Section 4. �

We show in Proposition C.2 that if the interaction is sufficiently weak
then (3.11) holds. We observe however that the previous Theorem holds
under weaker conditions, for example if (3.12) is satisfied and if we have
a unique solution to (2.6). Moreover, in [6], we focus on the active
particle exemple (1) where we will show that this proposition holds and
that, by solving exactly (3.13) we can obtain explicit expressions for the
diffusivity matrix and for the mobility matrix ; we will then be able to
infer some physical consequences for the physical system.

The form taken by the limiting functional is reminiscent of the func-
tional appearing in the Macroscopic Fluctuations Theory for diffusive
systems [10] with the particular features that the diffusivity is indepen-
dent of the density and the mobility is linear in the density. This is also
the case for independent diffusion processes in the plane, but moreover
there a proportionality between D and σ would hold and this is usually
not the case here and in particular for the case (1). This absence of pro-
portionality is a manifestation of the interactions at a macroscopic level.
Observe that the limiting rate functional corresponds formally to Dean’s
equation for the empirical density evolving as

∂tρ =∇ · D∇ρ +
q

2
N∇ · (

p
ρσξ) (3.17)

with ξ a standard n-space dimensional white noise.

4. PROOF OF THEOREM 1

4.1. Asymptotic expansion of Aε. Recall the equation (3.4):

Aεf ( f ) = ε∂t f + T0( f ) − ε−1D f ( f )

Consider a sequence of densities approximating the local equilibrium
at order 2 in ε:

f ε = fle + ε f1 + ε
2 f2 +O(ε3). (4.1)



15

We want to expand Aεf ε( f
ε) at first order in ε. We have first (use (3.6))

by a Taylor expansion that

D f ε( f
ε) = D fle( fle) + εLG( f1) + ε

2∂θQ( fle, f1, f2) +O(ε3).

The presence of a ∂θ in the last term follows from the presence of a ∂θ
on the left in the definition (2.4) of D f . In the following we will not use
the exact expression of Q. Moreover we recall that D fle( fle) = 0. Then
we get the Taylor expansion

Aεf ε( f
ε) = T0( fle)−LG( f1)

+ ε [∂t fle +T0( f1)− ∂θQ( fle, f1, f2)] +O(ε2).
(4.2)

4.2. Γ -liminf. In this subsection we prove the following proposition.

Proposition 4.1. Assume (3.11) (and hence (3.12)). Let f be a time de-
pendent angle-position density and consider a sequence ( f ε)ε of time de-
pendent angle-position densities in the form

f ε = f + ε f1 + ε
2 f2 +O(ε3). (4.3)

Then we have the following Γ -liminf inequality

lim inf
ε→0

I εT ( f
ε) ≥ IT ( f ).

where IT is defined by (3.16).

Proof. In order to simplify notation we denote by 〈 f , g〉 the scalar product
of the functions f (q,θ ) and g(q,θ ) with respect to dq dθ . Recall the
definition (3.3) of I εT and the Hamiltonian variational representation
of the H−1-norm in terms of a supremum given in (3.2). For any test
function ϕ(q,θ , t) we have

I εT ( f
ε)≥

1

4

∫ T

0

d t
¦

2〈ϕ, Aεf ε( f
ε)〉 − 〈[∂θϕ]2, Γ f ε〉

©

. (4.4)

The aim is thus to choose a sequence (ϕε)ε of test functions in order
to maximize the righthand side of the previous expression in the limit
ε→ 0.

We observe first that if f is not a local equilibrium then D f ( f ) 6= 0 and
IT ( f ) = +∞. Hence if ( f ε)ε converges to f , the term Aεf ε( f

ε) becomes
equivalent as ε → 0 to −ε−1D f ( f ) (see (3.4)) so that by choosing the
test function ϕ = 1 in the previous formula we get

lim inf
ε→0

I εT ( f
ε) = +∞.
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Let now ( f ε)ε be a sequence like in (4.1) that converges towards a
local equilibrium fle(q,θ , t) := ρ(q, t)V (θ ) as ε → 0. We consider a
sequence of test functions (ϕε)ε in the form

ϕε(q,θ , t) = ε−1ϕ−1(q,θ , t) +ϕ0(q,θ , t).

By using (4.2) and plugging this choice of test function in the righthand
side of (4.4) we get

I εT ( f
ε)≥

1

2

∫ T

0

d t
�

ε−2X t + ε
−1Yt + Zt

	

+ O(ε)

where

X = −1
2 〈(∂θϕ−1)

2, Γ fle〉

Y = 〈ϕ−1,T0( fle)−LG( f1)〉 −
1
2 〈(∂θϕ−1)

2, Γ f1〉 − 〈(∂θϕ−1)(∂θϕ0), Γ fle〉

Z = 〈ϕ0,T0( fle)−LG( f1)〉+ 〈ϕ−1 , [∂t fle +T0( f1)− ∂θQ( fle, f1, f2)]〉

− 1
2 〈(∂θϕ−1)

2, Γ f2〉 − 〈(∂θϕ−1)(∂θϕ0), Γ f1〉 −
1
2 〈(∂θϕ0)

2, Γ fle〉

Since X is negative, in order to maximize the righthand side of (4.4)
in the limit ε→ 0, we have to choose the test function in order to cancel
X , i.e.

ϕ−1(q,θ , t) := ϕ−1(q, t).

This implies that the second and third term in Y are zero. Moreover the
first one is also zero because:

• First, recalling the definition (2.14) ofT0 and the definition (2.15)
of the vector field V , we have that:

〈ϕ−1,T0( fle)〉= 〈ϕ−1, GT0(ρ)〉

=

∫

dqϕ−1(q, t)

�∫

dθG(θ )V (θ ) · ∇ρ(q, t)
�

�

= 0,

because 〈V 〉G = 0;

• Secondly, using the expression (3.9) of L †
V and the fact that ϕ−1

is independent of θ , we have that:

〈ϕ−1,LG( f1)〉=



L †
G(ϕ−1), f1

�

= 0.
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For the term Z , since ϕ−1 is independent of θ , it can be simplified as

Z = 〈ϕ0,T0( fle)−LG( f1)〉+ 〈ϕ−1 , [∂t fle +T0( f1)]〉 −
1
2 〈(∂θϕ0)

2, Γ fle〉

= 〈ϕ0,T0( fle)〉+ 〈ϕ−1 , ∂t fle〉 −
1
2 〈(∂θϕ0)

2, Γ fle〉

− 〈 f1 , L †
G(ϕ0)−T

†
0 (ϕ−1)〉.

(4.5)

Observe that Z does not depend on f2. By definition of Γ -convergence
the lower bound we have to obtain shall not depend on the way the
sequence ( f ε)ε converges to fle, i.e. shall not depend on f1. A simple
choice is then to take ϕ0 solution of

L †
Gϕ0 −T

†
0 ϕ−1 = 0=L †

Gϕ0 +T0ϕ−1 (4.6)

where the last equality is due to the property T †
0 = −T0. Since

T0(ϕ−1)(q,θ , t) = V (θ ) · ∇ϕ−1(q, t),

by using the vector fieldψ defined in (3.13), a solution to equation (4.6)
is provided by

ϕ0(q,θ , t) =ψ(θ ) · ∇ϕ−1(q, t).

To summarize we get the following form for the test function

ϕε(q,θ , t) = ε−1ϕ−1(q, t) +ψ(θ ) · ∇ϕ−1(q, t).

We plug this form of the test function in (4.5) and simplify each term.
Recall the definition of D given in (3.4). Using the definition (2.14) of
T0 and performing one spatial integration by parts we have

〈ϕ0,T0( fle)〉= −
∫

dq ϕ−1(q, t)∇ ·D∇ρ(q, t).

For the second term we have trivially

〈ϕ−1 , ∂t fle〉=
∫

dq ϕ−1(q, t) ∂tρ(q, t).

The third one is rewritten as

〈(∂θϕ0)
2, Γ fle〉=

∫

dq ρ(q, t)∇ϕ−1(q, t) · σ∇ϕ−1(q, t) .
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with the mobility matrix defined in (3.4). Therefore we have obtained
that

I εT ( f
ε)≥

1

4

∫ T

0

d t

�

2

∫

dq ϕ−1(q, t)
�

∂tρ(q, t) dq−∇ ·D∇ρ(q, t)
�

−
∫

dq ρ(q, t)∇ϕ−1(q, t) · σ∇ϕ−1(q, t)

�

+ O(ε).

Sinceϕ−1 is arbitrary we can take the supremum onϕ−1 on the righthand
side of the previous expression and we get the result by recalling the
variational formula in terms of a supremum for the H−1-norm defining
IT .

�

Remark 1. Strictly speaking, we did not prove here in full rigor the Γ -liminf
convergence of Definition 1 because we did not precise the topology setting
and Proposition 4.1 is proved only for sequences in the form (4.3).

4.3. Γ -limsup. The aim of this section is to prove the following Γ -limsup
property.

Proposition 4.2. Assume (3.11) (and hence (3.12)). Let f be a time de-
pendent position-angle density function. There exists a sequence ( f ε)ε of
time dependent position-angle density functions converging to f such that

lim sup
ε→0

I εT ( f
ε)≤ IT ( f ).

where IT is defined by (3.16).

Proof. We can assume that f (q,θ , t) is a local equilibrium in the form
fle(q,θ , t) = ρ(q, t)G(θ ) (otherwise the result is trivial to prove since
the righthand side is then infinite). We now have to construct a sequence
(called a recovery sequence) ( f ε)ε converging to fle such that

limsup
ε→0

I εT ( f
ε) ≤ IT ( fle).

Recall the formula (3.3) for I εT and the variational formula of the first
line in (3.5) for the H−1-norm in terms of an infimum. Then we have
that

I εT ( f
ε)≤

1

4

∫ T

0

d t

*
�

cε
�2

Γ f ε

+

where cε := cε(q,θ , t) is any control satisfying ∂θ cε = Aεf ε( f
ε). Observe

that such a control exists only if
∫ π

−π
dθ Aεf ε(q,θ , t) = 0 (4.7)
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for any q and any time t ≤ T . Consider a sequence ( f ε)ε in the form

f ε = fle + ε f1.

Since f ε is a density this implies that 〈1, f1〉 = 0. A Taylor expansion of
Aεf ε( f

ε) similar to the one given in (4.2) shows that

Aεf ε( f
ε) = T0( fle)−LG( f1)

+ ε [∂t fle +T0( f1)− ∂θQ( fle, f1, 0)] + ε2∂t f1

where the operator Q appeared in (4.2) and whose exact form is irrele-
vant. Hence the constraint (4.7) is equivalent to

∫ π

−π
dθ
�

T0( fle)−LG( f1)
�

= 0,

∫ π

−π
dθ
�

∂t fle +T0( f1)
�

= 0,

∂t

�∫ π

−π
dθ f1

�

= 0.

The first constraint is always satisfied by recalling the definition (2.14)
of T0 and observing thatL †

G(1) = 0 (see (3.9)). In the sequel we impose
the following sufficient conditions

∫ π

−π
dθ
�

∂t fle +T0( f1)
�

= 0,

∫ π

−π
dθ f1 = 0. (4.8)

Observe that the second condition implies 〈1, f1〉= 0. If such conditions
hold then we have

limsup
ε→0

I εT ( f
ε)≤

1

4
inf

c

∫ T

0

d t

�

c2

Γ fle

�

(4.9)

where the infimum is taken over all the controls c such that

∂θ c = T0( fle)−LG( f1). (4.10)

Hence, the goal is now to choose f1 respecting the constraints (4.8)
and a corresponding control c satisfying (4.10) in order to minimize the
righthand side of the previous inequality. Given f1, the control is unique
up to a function depending only on position and time. Without the con-
straints the optimal control would be of course c = 0, which would im-
pose to f1 to cancel the righthand side of (4.10).

We decompose then f1 as the sum of two terms

f1 := f 0
1 + g1
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where f 0
1 is such that

T0( fle)−LG( f
0

1 ) = 0. (4.11)

The naive choice f1 = f 0
1 would permit to take a zero control c but the

first constraint in (4.8) would not be respected. The term g1 will permit
to respect the constraint.

We have that

T0( fle)(q,θ , t) = G(θ )V (θ ) · ∇ρ(q, t).

Hence, we can solve (4.11) by writing

f 0
1 (q,θ , t) = −G(θ )ω(θ ) · ∇ρ(q, t) (4.12)

where the vector field ω :=ω(θ ) = (ω1(θ ), . . . ,ωn(θ )) ∈ Rn is solution
to

LG(Gωk) = −GV k, (4.13)

such that 〈ω〉G = 0 (this is always possible since ω+ C is also a solution
for any constant vector field C). The existence and uniqueness (up to
additive constant vector fields ) ofω is a consequence of (3.12). Observe
now that by definition of T0 and of f 0

1 , we have that
∫ π

−π
dθ T0( f

0
1 ) = −

∫ π

−π
dθ V (θ ) · ∇

�

G(θ )ω(θ ) · ∇ρ(q, t)
�

= −∇ · D∇ρ
(4.14)

where the last equality follows from the definition (3.4) of D, the defini-
tion (3.13) of ψ and the following computation

〈ψk, V `〉G = −
∫ π

−π
dθψk(θ )[LG(Gω`)](θ )

=

∫ π

−π
dθ[L †

G(ψk)](θ )(Gω`)(θ ) = 〈V k,ω`〉G.

(4.15)

Remark 4.3. Observe that if we had the relation

G−1 ◦LG ◦ G =L †
G

then (4.15) would be trivial to establish. However this last relation usu-
ually does not hold.

Hence, we can now reformulate the optimization problem (4.9) as

limsup
ε→0

I εT ( f
ε)≤

1

4
inf

c

∫ T

0

d t

�

c2

Γ fle

�

(4.16)
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for any control c such that

∂θ c = −LG(g1).

with the constraints (4.8) replaced by the following constraints on g1

∂tρ −∇ · D∇ρ = −
∫ π

−π
dθT0(g1) and

∫ π

−π
g1dθ = 0 (4.17)

thanks to (4.14) and the fact that
∫ π

−π dθ f 0
1 = 0 (since 〈ω〉G = 0).

We look now for a function g1 in the form

g1(q,θ , t) = −a(q, t) · (Gξ)(θ )

where ξ is a vector field of Rn such that 〈ξ〉G = 0 (in order to respect the
second constraint in (4.17)) and a := a(q, t) ∈ Rn is an arbitrary vector
field depending only on q and t. We have then

−
∫ π

−π
dθT0(g1) =∇ · Ea

with E the non symmetric matrix defined by its entries as follows:

Ek,` = 〈V k,ξ`〉G. (4.18)

We introduce the vector field W := W (θ ) = (W1(θ ), . . . , Wn(θ )) ∈ Rn

such that

∂θW =LG(Gξ),

∫ π

−π
dθ

W (θ )
Γ (θ )G(θ )

= 0, (4.19)

and the square symmetric matrix R of size n whose entries are defined
by

Rk` =

�

Wk

G
,
1
Γ

W`

G

�

G

, k,` ∈ {1, . . . , n}. (4.20)

Observe then that

−LG(g1)(q,θ , t) = a(q, t) · [LG(Gξ)](θ )
= ∂θ [a(q, t) ·W (θ )]

so that
c(q,θ , t) := a(q, t) ·W (θ )

is an admissible control in the optimisation problem (4.16). Observe
moreover that

∫ T

0

d t

�

c2

Γ fle

�

=

∫ T

0

d t

∫

dq
a(q, t) ·Ra(q, t)

ρ(q, t)
.
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We have obtained that for any ξ(θ ) such that 〈ξ〉G = 0 (this choice for
ξ fix the matrix E and the matrix R) and any a := a(q, t) satisfying the
constraint

∂tρ −∇ ·D∇ρ =∇ · Ea (4.21)

there exists a sequence ( f ε)ε converging to fle (depending on f1, hence
on g1 and hence on a,ξ) such that

lim sup
ε→0

I εT ( f
ε)≤

1

4

∫ T

0

d t

∫

dq
a(q, t) ·Ra(q, t)

ρ(q, t)
. (4.22)

This recovery sequence is given by

f ε(q,θ , t) = ρ(q, t)G(θ )− εG(θ ) [ω(θ ) · ∇ρ(q, t) + ξ(θ ) · a(q, t)] .
(4.23)

We want to make as small as possible the righthand side of (4.22) by
choosing ξ and a. This optimal choice will then fix entirely the sequence
f ε defined in (4.23).

Given E and R, recalling the definition (3.1) of H−1-norm in terms of
an infimum, we have that

1

4
inf

a

∫ T

0

d t

∫

dq
a(q, t) ·Ra(q, t)

ρ(q, t)

=
1
4

∫ T

0

‖∂tρ −∇ ·D∇ρ‖
2
−1,ρER−1E† d t

where the infimum above is taken of all controls a satisfying (4.21).
The challenge is then now to optimize over ξ (the matrices E and R are

functions of them) in order to make the righthand side of the previous
equality as small as possible. By Proposition 4.1 we may guess that we
have necessarily

ER−1E† ≤ σ (4.24)

where the inequality is understood in terms of corresponding quadratic
forms. This is indeed proved in Lemma 4.4 below. In order to real-
ize the equality we claim that it suffices to choose the vector field ξ :=
(ξ1, . . . ,ξn) such that

∂θψk =
Wk

ΓG
, i.e. LG(Gξk) = ∂θ

�

ΓG∂θψk

�

. (4.25)

The existence and uniqueness (because imposed to be centered) of ξ is
a consequence of (3.12). To show that with this choice we realize the
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equality in (4.24), we observe then first that by the definition of the
mobility matrix (3.4) we get

σ = R, (4.26)

and secondly that

E = R. (4.27)

The last equation come from

Ek` = 〈V k,ξ`〉G = −
∫ π

−π
dθL †

G(ψk)Gξ` = −
∫ π

−π
dθψkLG(Gξ`)

=



∂θψk, W`
G

�

G
= Rk`

where the penultimate equality results from (4.19) and an integration by
parts and the last one from (4.25). In particular this E is finally symmet-
ric. Then, the two relations (4.26) and (4.27) give direcly the matricial
equality

ER−1E† = σ.

To summarize, with the choice of ξ in (4.25) and the optimal control
a realizing the infimum in the righthand side of (4.22) we have proved
that the corresponding sequence ( f ε)ε defined by (4.23) satisfies

limsup
ε→0

I εT ( f
ε)≤

1
4

∫ T

0

‖∂tρ −∇ ·D∇ρ‖
2
−1,ρσ d t.

Formally, the good choice of the recovery sequence is given by

f ε(q ,θ , t) = ρ(q , t)G (θ )

+ ε
¦

L −1
G

�

GV
�

(θ ) · ∇ρ(q, t) +
�

L −1
G ∂θΓG∂θ

�

L †
V

�−1��
V
�

(θ ) · a(q, t)
©

with a realizing the infimum in the righthand side of (4.22). �

Lemma 4.4. For any choice of the vector field ξ satisfying 〈ξ〉G = 0 we
have that

ER−1E† ≤ σ

where E and R are defined as functions of ξ by (4.18) and (4.20).
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Proof. For any x,y ∈ Rn, recalling the definition (3.4) of σ, we have by
Cauchy-Schwarz inequality that

x · Ey=

®

∑

k

xk ∂θψk ,
∑

`

y`
W`
G

¸

G

≤

√

√

√

®

�∑

k

xk

p
Γ∂θψk

�2
¸

G

√

√

√

®

�∑

`

y`
1p
Γ

W`
G

�2
¸

G

=
p

x ·σx
p

y ·Ry

Observe now that σ − ER−1E† is the Schur complement of the block R
of the symmetric matrix M defined by

M =
�

σ E
E† R

�

.

It is well known that if M ≥ 0 then the Schur complement of the block
R of the symmetric matrix M is also. So it is sufficient to prove that
M is non-negative, which is a consequence of the inequality x · Ey ≤p

x ·σx
p

y ·Ry proved above. �

5. FUTURE WORK AND OPEN QUESTIONS

5.1. Homogenization limit first ε→ 0 first and then mean field limit
N →∞ after. As mentioned in the introduction, we have the two dif-
ferent LDP principles: (1.2) obtained by fixing N and sending ε to 0 and
(1.3) obtained by fixing ε and sending N to ∞. In this work we stud-
ied the limit as ε → 0 of the rate functional appearing in (1.3). By a
contraction principle we have therefore a LDP with a rate functional, say
FT (ρ) for the qi ’s density ρ in the limit N →∞ and then ε→ 0. From
(1.2) we can deduce by a contraction principle a LDP for the empirical
density of the qi ’s in the limit ε → 0 (with N fixed). Then a natural
question would be to study the limit as N → ∞ of the corresponding
rate function and understand the links the latter has with FT . Observe
that related questions have been investigated in the finite dimensional
case [56, 61, 3, 73, 58, 51] through the study of SDE’s with a small noise
regulated by a parameter α → 0 and fast oscillating coefficients whose
oscillations are regulated by a second parameter δ → 0. The limiting
behavior of the SDE depends on the relation between α and δ.

5.2. Non equilibrium models. We restricted our study to the case where
the local equilibria are unique and where the underlying θi ’s dynamics
is reversible when R =∞. None of theses conditions is necessary and
probably that some of our results can be extended to cover situations
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where they do not hold. In particular it would be interesting to con-
sider ‘non-equilibrium’ Shinomoto-Kuramoto type models for the veloc-
ity [89, 80, 85, 63] adapted in our context, i.e. for example models with
motion equations given by:

dqi = ε V (θi)d t,

θ̇i = F − h sinθi +
γ

Ni

∑

j∈Vi

sin(θ j − θi) +
p

2Γηi(t).

where F is a constant force, hence not the derivative of a periodic force.
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APPENDIX A. DERIVATION OF THE KINETIC EQUATION

In this section we derive formally the kinetic equation (2.3). Even
if we are not very precise and careful in taking the different limits, we
believe that the actual mathematical techniques should be sufficient to
derive rigorously the previous kinetic equation ([13]).

Let us consider

f N (q,θ , t) dqdθ := f N ,R,ε(q,θ , t) dqdθ =
1

N

N
∑

i=1

δ(qi(t),θi(t))(dq, dθ )
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the position-angle empirical density and let ϕ(q,θ ) be a smooth com-
pactly supported macroscopic observable. We have that

d

d t

∫

ϕ(q,θ ) f N (q,θ , t) dqdθ

= ε

∫

V (θ ) · ∇ϕ(q,θ ) f N (q,θ , t) dqdθ

−
∫

(∂θU)(θ )∂θϕ(q,θ ) f N (q,θ , t) dqdθ

−
∫

∂θϕ(q,θ ) gN ,R,ε(q,θ , t) f N (q,θ , t) dqdθ

+

p
2

N

N
∑

i=1

Γ (θi)∂θϕ(qi,θi)
dW i

d t
+

∫

Γ (θ )∂ 2
θ
ϕ(q,θ ) f N(q,θ , t) dqdθ

(A.1)

with

gN ,R,ε(q,θ , t) =

∫

dq′dθ ′ 1|q−q′|≤RF(θ ,θ ′) f N (q′,θ ′, t)
∫

dq′dθ ′ 1|q−q′|≤R f N (q′,θ ′, t)
.

The last term on the RHS of (A.1) is due to the Itô correction. Basic
stochastic calculus shows that

E





�

1

N

N
∑

i=1

∫ t

0

Γ (θi)∂θϕ(qi,θi) dWi(s)

�2


= O(N−1)

vanishes in the large N limit. Assuming now that as N →∞, f N con-
verges to some function f R,ε we get that

gN ,R,ε(q,θ , t)→ ḡR,ε(q,θ , t) :=

∫

dq′dθ ′ 1|q−q′|≤RF(θ ,θ ′) f R,ε(q′,θ ′, t)
∫

dq′dθ ′ 1|q−q′|≤R f R,ε(q′,θ ′, t)
.

Observe now that as R → 0, assuming that limR→0 f R,ε = f ε, we have
that

lim
R→0

ḡR,ε(q,θ , t) =
F( f ε)

Π( f ε)
.

By performing some integration by parts, we conclude that, in distribu-
tion,

lim
R→0

lim
N→∞

f N ,R,ε = f ε

where f ε is the deterministic solution of the kinetic equation (2.3).
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APPENDIX B. LOCAL EQUILIBRIA

We look for the solutions f := f (q,θ ) of D f ( f ) = 0. In view of (2.4)
there exists then a function C(q) of q only such that

Γ

�

∂θU +
F( f )

Π( f )

�

f + Γ ∂θ f = C .

Dividing by Γ f on both sides, we remark that the lefthand side is a de-
rivative in θ because Π( f ) is independent of f and F( f ) = ∂θW ( f ).
Hence the integral in θ of the lefthand side divided by f is zero which
implies that C(q) = 0. Moreover, if f (q,θ ) is a solution it is necessar-
ily in the form f (q,θ ) = ρ(q)Gρ(q)(θ ) with

∫

dθGρ = 1 and ρ(q) =
∫ π

−π dθ f (q,θ ). We then observe that Gρ(θ ) will be solution of the equa-
tion with unknown G

[∂θU + F(G)]G + ∂θG = 0. (B.1)

We assume there exists a single (normalized) solution to this equation
that we denote by G. This corresponds to an absence of phase transition.
Then all local equilibria are in the form ρ(q)G(θ ). Observe that (B.1)
can be rewritten as a fixed point problem

G = T (G) := e−H , ∂θH = ∂θU + F(G) and

∫

dθ e−H = 1. (B.2)

The map T is a contraction mapping for the uniform topology if the inter-
action coupling F is sufficiently small and then in this case the uniqueness
of G follows.

APPENDIX C. LINEARIZED OPERATOR

C.1. Expression of the linearized operator L f . For a given position-
angle density f := f (q,θ ) we compute the linearized operator L f of
D f ( f ) as defined by (3.6). We perform hence a first order Taylor ex-
pansion in δ for D f +δg( f + δg) in the direction given by the function g
(which satisfies 〈1, g〉= 0). We have

D f +δg( f +δg)

= ∂θ

§

Γ

�

∂θU +
F( f ) +δF(g)
Π( f ) +δΠ(g)

�

( f +δg) + Γ [∂θ f +δ∂θ g]
ª

.

Since

F( f ) +δF(g)
Π( f ) +δΠ(g)

=
F( f )
Π( f )

+δ
�

F(g)
Π( f )

−
F( f )Π(g)
(Π( f ))2

�

+ O(δ2),
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we get

D f +δg( f +δg) = D f ( f ) +δL f (g) +O(δ2)

with

L f (g) := ∂θ

�

Γ

�

∂θU +
F( f )
Π( f )

�

g + Γ∂θ g + Γ
�

F(g)
Π( f )

−
F( f )
(Π( f ))2

Π(g)
�

f
�

.

In particular, if f (q,θ ) = fle(q,θ ) = ρ(q)G(θ ) is a local equilibrium,
since F( fle) = ρF(G) and Π( fle) = ρ) we have that L fle is independent
of ρ, i.e.

L fle =LG

and is given by (3.7).

C.2. Properties of LG and L †
G. In this section we give sufficient con-

ditions for the validity of the assumption (3.11) (and hence (3.12)).
Roughly speaking, we prove that if the interaction coupling function is
sufficiently small then (3.11) is satisfied.

We start by proving a lemma giving some bound for G. We use the
notation ‖ · ‖∞ to denote the supremum norm of bounded functions.

Lemma C.1. There exist universal constants K∗ and K∗ such that

sup
θ

G(θ )≤ K∗ exp {2π[C + ‖∂θ log Γ‖∞]} (C.1)

and
inf
θ

G(θ )≥ K∗ exp {2π[C + ‖∂θ log Γ‖∞]} (C.2)

where
C := C(F, U) = ‖∂θU‖∞ + ‖F‖∞.

Proof. Notice first that by (B.2), we have that G ≥ 0. Moreover since
∫ π

−π dθG(θ ) = 1 this implies there exists some θ ∗ such that G(θ ∗)≤ 1/π
(the constant is not optimal). Moreover for all θ we have that

|[F(G)](θ )|=
�

�

�

�

∫

dθ ′F(θ ,θ ′)G(θ ′)

�

�

�

�

≤ ‖F‖∞

since
∫

dθ ′G(θ ′) = 1. By dividing (B.1) by G, observing that ∂θG/G =
∂θ (log G), and integrating between θ ∗ and θ we deduce that

G(θ )≤ G(θ ∗)exp {|θ − θ ∗|[C + ‖∂θ log Γ‖∞]}

which gives (C.1) thanks to the choice of θ ∗.
To get (C.2) we proceed similarly by reasoning with 1/G instead of G.

There exists θ∗ such that G(θ∗) ≥ 1/4π since G ≥ 0 and
∫

dθG(θ ) = 1.
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By dividing (B.1) by G, observing that ∂θG/G = −∂θ (log(1/G)), and
integrating between θ∗ and θ we deduce that

(1/G)(θ )≤ (1/G)(θ∗)exp {|θ − θ∗|[C + ‖∂θ log Γ‖∞]}

which gives (C.2) thanks to the choice of θ∗. �

Proposition C.2. There exists a constant K depending on U and Γ such
that if

‖∂θW‖∞ ≤ K

then the following holds: there exists a constant κ > 0 such that for any
differentiable function g such that

∫

dθ g(θ ) = 0 we have

−
∫

dθ G−1LG(g) g ≥ κ
∫

dθ G Γ
�

∂θ (g/G)
�2

, (C.3)

and consequently, we have that

Ker(LG) = Span(G), Ker(L †
G) = Span(1). (C.4)

Proof. We first prove (C.3). Recall the potential H introduced in (B.2)
satisfying G = e−H . By (3.7), for any smooth function g such that

∫

dθ g(θ ) =
0, we have that

LG(g) = ∂θ
�

Γ e−H∂θ (e
H g)

�

+ ∂θ (ΓGF(g)) .

Multiplying this expression by eH g, integrating in θ and performing an
integration by parts we get

−
∫

dθ eHLG(g) g = D(g) +
∫

dθ Γ e−H F(g)∂θ (e
H g) (C.5)

where

D(g) :=

∫

dθ e−H Γ
�

∂θ (e
H g)

�2
≥ 0.

By Cauchy-Schwarz inequality the second term on the right hand side of
(C.5) can be bounded as

�

�

�

�

∫

dθ Γ e−H F(g)∂θ (e
H g)

�

�

�

�

≤
Æ

D(g)

√

√

√

∫

dθ Γ e−H F2(g)

and the goal is thus now to prove that
∫

dθ Γ e−H F2(g)≤ κD(g) (C.6)
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for a constant κ < 1 independent of g. By Cauchy-Schwarz inequality
we have that

‖F(g)‖2
∞ ≤ ‖F‖

2
∞

�∫

dθ |g(θ )|
�2

≤ ‖F‖2
∞

�∫

dθ e−2H(θ )

� �∫

dθ |eH g(θ )|2
�

≤ 2π‖F‖2
∞‖e

−H‖2
∞

�∫

dθ |eH g(θ )|2
�

.

By Poincaré inequality we have that
∫

dθ |eH g(θ )|2 ≤
∫

dθ
�

∂θ (e
H g)

�2
≤ ‖1/Γ‖∞‖eH‖∞D(g).

Recalling that G = e−H we get that (C.6) is satisfied with

κ := 2π‖F‖2
∞ ‖Γ‖∞‖1/Γ‖∞‖1/G‖∞ ‖G‖

2
∞

Thanks to Lemma C.1 we see that if ‖F‖∞ is sufficiently small, κ < 1
and this concludes the proof of the main result of the proposition.

To deduce (C.4), let g ∈ Ker(LG) so that LG(g) = 0. We consider
h := g − cG with c =

∫

dθ g so that
∫

dθ h = 0. Since LG(G) = 0, we
have also LG(h) = 0. Then, since we have

0=

∫

dθ G−1LG(h)h≤ −κ
∫

dθ G Γ
�

∂θ (h/G)
�2

we deduce that h/G is constant and since its integral in θ of G is 1 while
the integral of h in θ is 0, we deduce that h= 0, i.e. g = cG ∈ Span(G).
Similarly if ϕ ∈ Ker(L †

G), we start to define bϕ = ϕ−c where the constant
c is such that

∫

dθG bϕ = 0, i.e. c = 〈ϕ〉G. Since L †
G(1) = 0, we have

L †
G( bϕ) = 0. We use (C.3) to write

0=

∫

dθ GL †
G( bϕ) bϕ =

∫

dθ G−1LG(G bϕ) (G bϕ)≤ −κ
∫

dθ GΓ [∂θ bϕ]
2.

It follows that bϕ is constant and since it is of mean zero, it is zero. Hence
ϕ is constant, i.e. ϕ ∈ Span(1).

�



31

APPENDIX D. CHAPMAN-ENSKOG EXPANSION IN THE HOMOGENIZED

LIMIT ε→ 0

We define ΠG the projection on the vector space of local equilibria
given for any function g by

[ΠG(g)](q,θ ) :=

�∫ π

−π
g(q,θ )dθ

�

G(θ ).

D.1. Chapman-Enskog expansion of the kinetic equation. We now
look at the density in the long time scale tε−1:

f̃ ε(q,θ , t) = f ε(q,θ , tε−1)

and we then send ε to 0. By (2.3) we have that

∂t f̃ ε +T ( f̃ ε) = ε−1D f̃ ε( f̃
ε). (D.1)

Equation (D.1) will be the basis of the following expansion.
Let f̃ ε0 be a local equilibrium defined by ΠG( f̃ ε) = f̃ ε0 , i.e.

f̃ ε0 (q,θ , t) = ρ̃ε0(q, t)G(θ ), ρ̃ε0 := Π( f̃ ε0 ),

and let us define gε1, assumed to be of order 1 as ε→ 0, by:

f̃ ε = f̃ ε0 + εgε1.

In other words, the hydrodynamic behavior of f̃ ε is entirely captured by
f̃ ε0 . Observe that ΠG(gε1) = 0 by construction. Inserting this expansion
into (D.1), we obtain:

[∂t +T ] ( f̃ ε0 ) =L f̃ ε0
(gε1) +O(ε). (D.2)

Notice that L f̃ ε0
=LG defined in (3.7) because f̃ ε0 is a local equilibrium.

Applying ΠG to (D.2) yields
�

ΠG (∂t +T )
�

( f̃ ε0 ) = O(ε), (D.3)

because ΠGLG = 0 and this implies

∂tρ̃
ε
0 + 〈V 〉G · ∇ρ̃

ε
0 = O(ε)

where we recall that 〈·〉G denotes the expectation w.r.t. G. The last equa-
tion is the hydrodynamical equation at leading order when ε→ 0.

Our goal is now to compute the O(ε) correction term. Observe that
the equation:

LG(ψ) =
�

∂t +T
�

( f̃ ε0 )
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in general has no solution for ψ, because ΠG applied on the right hand
side does not exactly vanish while ΠGLG = 0. However, using (D.3) we
can as well rewrite (D.2) as

LG(g
ε
1) =

�

Id−ΠG

��

∂t +T
�

( f̃ ε0 ) +O(ε).

Removing the O(ε), the equation

LG(ψ) =
�

Id−ΠG

��

∂t +T
�

( f̃ ε0 )

together with the condition that ΠV (ψ) = 0, has a unique solution de-
noted by f̃ ε1 thanks to assumption (3.12). We have

��

Id−ΠV

��

∂t +T
�

( f̃ ε0 )
�

(q,θ , t) = V (θ ) · ∇ρ̃ε0(q, t).

Let ω be the vector field solution to

LG(Vω) = −GV , (D.4)

such that 〈ω〉V = 0 (this is always possible since ω+ C is also a solution
for any constant vector field C). The existence and uniqueness of ω
is a consequence of (3.12) (see also (4.13) where this vector field is
introduced to prove the Γ -limsup). Therefore we have

f̃ ε1 (q,θ , t) = −∇ρ̃ε0(q, t) · (Gω)(θ ).

We then rewrite gε1 = f̃ ε1 + εgε2 and so defined gε2 will be of order 1. We
have

f̃ ε = f̃ ε0 + ε f̃ ε1 + ε
2 gε2.

Plugging this in (D.1) we get
�

∂t +T
�

( f̃ ε0 ) + ε
�

∂t +T
�

( f̃ ε1 ) + ε
2
�

∂t +T
�

(gε2) = ε
−1D f̃ ε( f̃

ε).

We applyΠG on both sides and observe thatΠGD f̃ ε( f̃
ε) = 0, [ΠG ∂t]( f̃ ε1 ) =

[∂t ΠG]( f̃ ε1 ) = 0 since ΠG( f̃ ε1 ) = 0. It follows that

ΠG[∂t +T ] ( f̃ ε0 ) + εΠGT ( f̃ ε1 ) = O(ε2).

Observe now that f̃ ε1 has the same expression as f 0
1 in (4.12) (by chang-

ing there ρ by ρ̃ε0). Therefore by using the same computations as in
(4.14) and (4.15)

ΠGT ( f̃ ε1 ) = −ε∇ ·D∇ρ̃
ε
0.

Then we obtain the following approximated diffusion equation for the
density

∂tρ̃
ε
0 + 〈V 〉G · ∇ρ̃

ε
0 − ε∇ ·D∇ρ̃

ε
0 = O(ε2)

where the matrix D is given by (3.4).
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D.2. Formal derivation of the fluctuating kinetic equation. Since we
are interested in the large fluctuations around the limiting typical be-
havior described in Section 2, we have to take in account the first order
corrections (in N), i.e. to remember that we neglected the small noise
term in (A.1)
p

2

N

N
∑

i=1

Γ (θi)∂θϕ(qi,θi) η̇i(t) =

√

√ 2

N

1
p

N

N
∑

i=1

Γ (θi)∂θϕ(qi,θi) η̇i(t)

(D.5)
which, in the large N limit and then small R limit, may be approximated
by

√

√ 2
N
∂θ

�

p

Γ f ε η
�

where η := η(q,θ , t) is a (q,θ , t)-Gaussian white noise. Observe that
this is a non-trivial assumption since first the previous term is mathe-
matically difficult to define and secondly because this results from the
belief that the correlations in the sum (D.5) may be neglected. There-
fore, in order to take into account fluctuations, we have to replace (2.3)
by the fluctuating kinetic equation

∂t f ε = ∂θ

�

Γ

�

∂θU +
F( f ε)

ρε

�

f ε + Γ ∂θ f ε
�

− εV (θ ) · ∇ f ε

+

√

√ 2
N
∂θ
�p

Γ f ε η
�

.

We now send ε to 0 and look at the fluctuating density in the long time
scale tε−1:

f̃ ε(q,θ , t) = f ε(q,θ , tε−1).
We have that

∂t f̃ ε = ε−1∂θ

�

Γ

�

∂θU +
F( f ε)

ρε

�

f ε + Γ ∂θ f ε
�

− V (θ ) · ∇ f̃ ε

+

√

√ 2
Nε
∂θ
�

q

Γ f̃ ε η
�

.

Performing a change of frame and accelerating again time by ε−1 like in
(2.12), we obtain (2.13).

D.3. Chapman-Enskog expansion of the fluctuating kinetic equation.
We would like to proceed as in the previous section, with a Chapman-
Enskog expansion. There are now two small parameters, ε and N−1, and
we will have to choose an appropriate scaling. We introduce explicitly N
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in the notation. The local equilibrium f̃ ε,N0 is defined by ΠV ( f̃ ε,N ) = f̃ ε,N0

(hence L f̃ ε,N0
=LG) and the correction gε,N1 by:

f̃ ε,N = f̃ ε,N0 + εgε,N1 .

It is not clear a priori that gε,N1 can be taken of order 1; we assume how-
ever that εgε,N1 = o(1). Inserting this into (2.11), we obtain

[∂t +T ] ( f̃
ε,N

0 ) =LG(g
ε,N
1 ) + (εN)

−1/2N
�
q

Γ f̃ ε,N
�

+ o(1) (D.6)

Notice we have not expanded the noise term. Applying ΠG to the above
equation yields

ΠG[∂t +T ] ( f̃
ε,N

0 ) = o(1)
which provides the hydrodynamic equation at leading order; it is not
modified by the noise. We now rewrite (D.6) as

LV (g
ε,N
1 ) =

�

Id−ΠG

�

(∂t +T ) ( f̃
ε,N

0 ) + (εN)−1/2N
�
q

Γ f̃ ε,N0

�

+ o(1) + (εN)−1/2O(εgε,N1 )

where we have now expanded the noise: this creates a noisy term of
order εgN ,ε

1 , denoted by O(εgε,N1 ). We call f̃ ε,N1 the unique solution of

LG( f̃
ε,N

1 ) =
�

Id−ΠG

�

(∂t+T ) ( f̃
ε,N

0 )+(εN)−1/2N
�
q

Γ f̃ ε,N0

�

, ΠG(u) = 0.

Since
�

�

Id−ΠG

�

(∂t +T )( f̃ ε0 )
�

(q,θ , t) + (εN)−1/2N
�
q

Γ f̃ ε,N0

�

=∇ρ̃ε0(q, t) · V̄ (θ )G(θ ) + (εN)−1/2
Æ

2ρ̃ε0(q, t)∂θ
�Æ

(ΓG)(θ )η(q,θ , t)
�

,

we get that (recall (D.4))

f̃ ε,N1 = −∇ρ̃ε0(q, t) · (Vω)(θ ) + (εN)−1/2
Æ

2ρ̃ε0(q, t) ν(θ , q, t), (D.7)

with
LG(ν)(q,θ , t) = ∂θ

�Æ

(ΓG)(θ )η(q,θ , t)
�

. (D.8)

We can always choose ν such that E(ν) = 0 since Ker(LG) = Span(G).
Formally, the contribution to f̃ ε,N1 given by the first term in the right hand
side is of order 1, and the contribution of the noise, second term in the
right hand side is of order (εN)−1/2. We rewrite gε,N1 = f̃ ε,N1 + εgε,N2 ,

where we want that εgε,N2 = o
�

f̃ ε,N1

�

. The full expansion is then

f̃ ε,N = f̃ ε,N0 + ε f̃ ε,N1 + ε2 gε,N2 .

At this point we can make sure that the expansion makes sense, that is
ε f̃ ε,N1 = o(1). Formally, this requires only that N−1/2 = o(1) i.e. N large.
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However, if we want that ε f̃ ε,N1 is actually O(ε), we have to require that
(εN)−1 = O(1). We plug again the expansion for f̃ ε,N into (2.11):

[∂t +T ]( f̃
ε,N

0 ) + ε[∂t +T ]( f̃
ε,N

1 ) +O(ε2 gε,N2 )

= ε−1D f̃ ε,N ( f̃
ε,N ) + (εN)−1/2N (

q

Γ f̃ ε,N ),

and we apply ΠG. The right hand side vanishes, and we are left with

ΠG[∂t +T ] ( f̃
ε,N

0 ) + εΠGT ( f̃
ε,N

1 ) = O(ε2 gε,N2 ).

We assume that the right hand side is indeed much smaller than the
second term in the left hand side in the scaling limit. Recall (D.7). We
observe now that by using the same computations as in (4.14) and (4.15)

[ΠGT ] (∇ρ̃ε0 · (Vω)) = −G∇ ·D∇ρ̃ε0.

with D defined by (3.4), and we claim that

[ΠGT ]
�
Æ

ρ̃ε0 ν
�

(q,θ , t) = G(θ )∇ ·
�
Æ

ρ̃ε0(q, t)σ ζ(q, t)
�

with ζ := ζ(q, t) a standard 2-space dimensional Gaussian white noise
and σ defined by (3.4). To prove this write

�

[ΠGT ]
�
Æ

ρ̃ε0 ν
��

(q,θ , t) = G(θ ) Zε(q, t),

Zε(q, t) :=

∫

dθ ′ V (θ ′) · ∇
�
Æ

ρ̃ε0 ν
�

(q,θ ′, t)

where Zε(q, t) is a centered random variable. Recalling (D.8) and (3.13)
we have that

Zε(q, t) = −
∫

dθ (L †
Gψ)(θ ) · ∇

�
Æ

ρ̃ε0 ν
�

(q,θ , t)

= −
∫

dθ ψ(θ ) · ∇
�
Æ

ρ̃ε0 LG(ν)
�

(q,θ , t)

= −
∫

dθ ψ(θ ) · ∇
�
Æ

ρ̃ε0 ∂θ (
p
ΓGη)

�

(q,θ , t)

=

∫

dθ
p
ΓG(θ )(∂θψ)(θ ) · ∇

�
Æ

ρ̃ε0 η
�

(q,θ , t)

=∇ ·
�∫

dθ
p
ΓG(θ )

�
Æ

ρ̃ε0 η
�

(q,θ , t) (∂θψ)(θ )

�

:=∇ · Y ε(q, t)

with Y ε a centered Gaussian field whose covariance satisfies

E(Y ε(q, t)Y ε(q′, t ′)) = δ(q− q′)δ(t − t ′) ρ̃ε0(q, t) 〈Γ (∂θψ) · (∂θψ)〉G.
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This provides the fluctuating hydrodynamic equation we are looking
for. The final stochastic PDE for ρ̃ε0 is given by (compare with (3.17)):

∂tρ̃
ε
0 + 〈V 〉G · ∇ρ̃

ε
0 = ε∇ ·D∇ρ̃

ε
0 +

√

√2ε
N
∇ ·

�
Æ

ρ̃ε0σζ
�

+ o(1).
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