Vector fields and genus in dimension 3 - Archive ouverte HAL
Article Dans Une Revue International Mathematics Research Notices Année : 2022

Vector fields and genus in dimension 3

Pierre Dehornoy
Ana Rechtman

Résumé

Given a flow on a 3-dimensional integral homology sphere, we give a formula for the Euler characteristic of its transverse surfaces, in terms of boundary data only. We illustrate the formula with several examples, in particular with surfaces of low genus. As an application, we show that for a right-handed flow with an ergodic invariant measure, the genus is an asymptotic invariant of order 2 proportional to the helicity.
Fichier principal
Vignette du fichier
AsGenus_2020-09.pdf (2.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02307726 , version 1 (07-10-2019)
hal-02307726 , version 2 (22-09-2020)

Identifiants

Citer

Pierre Dehornoy, Ana Rechtman. Vector fields and genus in dimension 3. International Mathematics Research Notices, 2022, 2022 (5), pp.3262-3277. ⟨10.1093/imrn/rnaa255⟩. ⟨hal-02307726v2⟩
128 Consultations
176 Téléchargements

Altmetric

Partager

More