Schauder estimates for degenerate stable Kolmogorov equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2019

Schauder estimates for degenerate stable Kolmogorov equations

Résumé

We provide here global Schauder-type estimates for a chain of integro-partial differential equations (IPDE) driven by a degenerate stable Ornstein-Uhlenbeck operator possibly perturbed by a deterministic drift, when the coefficients lie in some suitable anisotropic Hölder spaces. Our approach mainly relies on a perturbative method based on forward parametrix expansions and, due to the low regularizing properties on the degenerate variables and to some integrability constraints linked to the stability index, it also exploits duality results between appropriate Besov Spaces. In particular, our method also applies in some super-critical cases. Thanks to these estimates, we show in addition the well-posedness of the considered IPDE in a suitable functional space.
Fichier principal
Vignette du fichier
Article.pdf (937.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02305541 , version 1 (04-10-2019)

Identifiants

Citer

Lorenzo Marino. Schauder estimates for degenerate stable Kolmogorov equations. 2019. ⟨hal-02305541⟩
56 Consultations
58 Téléchargements

Altmetric

Partager

More