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Abstract
We provide here global Schauder-type estimates for a chain of integro-partial differential equations

(IPDE) driven by a degenerate stable Ornstein-Uhlenbeck operator possibly perturbed by a deterministic
drift, when the coefficients lie in some suitable anisotropic Hölder spaces. Our approach mainly relies on a
perturbative method based on forward parametrix expansions and, due to the low regularizing properties
on the degenerate variables and to some integrability constraints linked to the stability index, it also
exploits duality results between appropriate Besov Spaces. In particular, our method also applies in some
super-critical cases. Thanks to these estimates, we show in addition the well-posedness of the considered
IPDE in a suitable functional space.

Keywords: Schauder estimates, degenerate IPDEs, perturbation techniques, parametrix, Besov spaces.

MSC: Primary: 35K65, 35R09, 35B45; Secondary: 60H30.

1 Introduction
For a fixed time horizon T > 0 and two integers n, d in N, we are interested in proving global Schauder
estimates for the following parabolic integro-partial differential equation (IPDE):{

∂tu(t,x) + 〈Ax+ F (t,x), Dxu(t,x)〉+ Lαu(t,x) = −f(t,x), on [0, T ]× Rnd

u(T,x) = g(x) on Rnd.
(1.1)

where x = (x1, . . . ,xn) is in Rnd with each xi in Rd and 〈·, ·〉 represents the inner product on Rnd. We
consider a symmetric non-local α-stable operator Lα acting non-degenerately only on the first d variables
and a matrix A in Rnd ⊗ Rnd with the following sub-diagonal structure:

A :=


0d×d . . . . . . . . . 0d×d
A2,1 0d×d . . . . . . 0d×d
0d×d A3,2 0d×d . . . 0d×d
... . . . . . . ...

...
0d×d . . . 0d×d An,n−1 0d×d

 . (1.2)

We will assume moreover that it satisfies a Hörmander-like condition, allowing the smoothing effect of Lα to
propagate into the system.
Above, the source f : [0, T ]× Rnd → R and the terminal condition g : Rnd → R are assumed to be bounded
and to belong to some suitable anisotropic Hölder space.
The additional drift term F (t,x) =

(
F1(t,x), . . . , Fn(t,x)

)
can be seen as a perturbation of the Ornstein-

Ulhenbeck operator Lα + 〈Ax, Dx〉 and it has structure "compatible" with A, i.e. at level i, it depends only
on the super diagonal entries:

Fi(t,x) := Fi(t,xi, . . . ,xn).
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It may be unbounded but we assume it to be Hölder continuous with an index depending on the level of the
chain.

Related Results. A large literature on the topic of Schauder estimates in the α-stable non-local framework
has been developed in the recent years (see e.g. Lunardi and Röckner [LR19] for an overview of the field),
mainly in the non-degenerate setting and assuming that α ≥ 1, the so called sub-critical case. We mention
for instance the stable-like setting, corresponding to time-inhomogeneous operators of the form

Ltφ(x) =
∫
Rnd

[
φ(x+ y)− φ(x)− 11≤α<2〈y, Dx〉

]
m(t,x,y) dy

|y|d+α + 11≤α<2〈F (t,x), Dxu(t,x)〉 (1.3)

where the diffusion coefficient m is bounded from above and below, Hölder continuous in the spatial variable
x and even in y if α = 1. Under these conditions and assuming the drift F to be bounded and Hölder
continuous in space, Mikulevicius and Pragarauskas in [MP14] obtained parabolic Schauder type bounds
on the whole space and derived from those estimates the well-posedness of the corresponding martingale
problem. We notice however that for the super-critical case (when α < 1), the drift term in (1.3) is set to
zero. This is mainly due to the fact that in the super-critical case, Lα is of order α (in the Fourier space)
and does not dominate the drift term F which is roughly speaking of order one.
In the non-degenerate, driftless framework (i.e. when Ax + F = 0 and n = 1 in (1.1)), Bass [Bas09] was
the first to derive elliptic Schauder estimates for stable like operators. We can refer as well to the recent
work of Imbert and collaborators [IJS18] concerning Schauder estimates for stable-like operator (1.3) with
α = 1 and some related applications to non-local Burgers equations. Eventually, still in the driftless case,
Ros-Oton and Serra worked in [ROS16] for interior and boundary elliptic-regularity in a general, symmetric
α-stable setting, assuming that the Lévy measure να associated with Lα writes in polar coordinates y = ρs,
(ρ, s) ∈ [0,∞)× Sd−1 as

να(dy) = µ̃(ds) dρ

ρ1+α

where µ̃ is a non-degenerate, symmetric measure on the sphere Sd−1. Related to the above, we can mention
also the associated work of Fernandez-Real and Ros-Oton [FRRO17] for parabolic equations.

In the elliptic setting, when α ∈ [1, 2) and Lα is a non-degenerate, symmetric α-stable operator and for
bounded Hölder drifts, global Schauder estimates were obtained by Priola in [Pri12] or in [Pri18] for respective
applications to the strong well-posedness and Davie’s uniqueness for the corresponding SDE. We notice
furthermore that in the sub-critical case, elliptic Schauder estimates can be proven for more general, translation
invariant, Lévy-type generators for following [Pri18] (see Section 6, and Remark 5 therein).

In the super-critical case, parabolic Schauder estimates were established by Chaudru de Raynal, Menozzi and
Priola in [CdRMP19] under similar assumptions to [ROS16]. An existence result is also provided therein.
We mention as well the work of Zhang and Zhao [ZZ18] who address through probabilistic arguments the
parabolic Dirichlet problem for stable-like operators of the form (1.3) with a non-trivial bounded drift, i.e.
getting rid of the indicator function for the drift. They also obtain interior Schauder estimates and some
boundary decay estimates (see e.g. Theorem 1.5 therein).

As we have seen, most of the literature is focused on the non-degenerate case. In the degenerate diffusive
setting, Lunardi [Lun97] was the first one to prove Schauder estimates for linear Kolmogorov equations under
weak Hörmander assumptions, exploiting anisotropic Hölder spaces (where the Hölder index depends on the
variable considered), in order exactly to control the multiple scales appearing in the different directions, due
to the degeneracy of the system.
After, in [Lor05] and [Pri09], the authors established Schauder-like estimates for hypoelliptic Kolmogorov
equations driven by partially nonlinear smooth drifts. On the other hand, let us also mention [CdRHM18]
where the authors first establish Schauder estimates for nonlinear Kolmogorov equations under some weak
Hörmander-type assumption. Their method is based on a perturbative approach through proxies that we
here adapt and exploit. In the degenerate, stable setting, we have to refer also to a recent work of Zhang
and collaborators [HWZ19] who show Schauder estimates for the degenerate kinetic dynamics (n = 2 above)
extending a method based on Littlewood-Paley decompositions already used in other works by Zhang (see
e.g. [ZZ18]), to the degenerate, multi-scaled framework. Even with different approaches and frameworks,
we consider here a generic d-level chain and we exploit thermic characterizations of Besov norms, our and
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their works bring to the same results in the intersecting cases, at least to the best of our knowledge. About
a different but correlated argument, we mention that the Lp-maximal regularity for degenerate non-local
Kolmogorov equations with constant coefficients was also obtained in [CZ18] for the kinetic dynamics (n = 2
above) and in [HMP19] for the general n-levels chain.

In the diffusive setting, Equation (1.1) appears naturally as a microscopic model for heat diffusion phenomena
(see [RBT00]) or, in the kinetic case (n = 2), it can be naturally associated with speed/position (or
Hamiltonian) dynamics where the speed component is noisy. It can be found in many fields of application
from physics to finance, see for example [HN04] or [BPV01]. When noised by stable processes, it can be used
to model the appearance of turbulence (cf.[CPKM05]) or some abnormal diffusion phenomena.
Moreover, the Schauder estimates will be a fundamental first step in order to study the weak and strong
well-posedness for the following stochastic differential equation (SDE):

dX1
t = F1(t,X1

t , . . . ,X
n
t )dt+ dZt

dX2
t = A2,1X

1
t + F2(t,X2

t , . . . ,X
n
t )dt

...
dXn

t = An,n−1X
n−1
t + Fn(t,Xn

t )dt

(1.4)

where Zt is a symmetric, Rd-valued α-stable process with non-degenerate Lévy measure να on some filtered
probability space (Ω, (Ft)t≥0,P). The complete operator Lα + 〈Ax+ F (t,x), Dx〉 then corresponds to the
infinitesimal generator of the process

(
X
)
t≥0, solution of Equation (1.4).

Mathematical Outline. In this work, we will establish global Schauder estimates for the solution of the
IPDE (1.1) exploiting the perturbative approach firstly introduced in [CdRHM18] to derive such estimates
for degenerate Kolmogorov equations. Roughly speaking, the idea is to perform a first order parametrix
expansion, such as a Duhamel-type representation, to a solution of the IPDE (1.1) around a suitable proxy.
The main idea behind consists in exploiting this easier framework in order to subsequently obtain a tractable
control on the error expansion. When applying such a strategy, we basically have two ways to proceed.
On the one hand, one can adopt a backward parametrix approach, as introduced by McKean and Singer
[MS67] in the non-degenerate, diffusive setting. This technique has been extended to the degenerate Brownian
case involving unbounded perturbation, and successfully exploited for handling the corresponding martingale
problem in [CM17]. Anyway, this approach does not seem very adapted to our framework especially because it
does not allow to deal easily with point-wise gradient estimates which will, at least along the non-degenerate
variable x1, be fundamental to establish our result.
On the other hand, the so-called forward parametrix approach has been successfully used by Friedman
[Fri64] or Il’in et al. [IKO62] in the non-degenerate, diffusive setting to obtain point-wise bounds on the
fundamental solution and its derivatives for the corresponding heat-type equation or in [CdR17] to derive
strong uniqueness for the associated SDE (1.4) (i.e. n = 2 with the previous notations). Especially, this
approach is better tailored to exploit cancellation techniques that are crucial when derivatives come in, as
opposed to the backward one.

The main difficulties to overcome in order to prove Schauder estimates in our framework will be linked to the
degeneracy of the operator Lα that acts only on the first d variables, as well as the unboundedness of the
perturbation F . Concerning this second issue, let us also mention that Schauder estimates for unbounded
non-linear drift coefficients in the non-degenerate diffusive setting were obtained under mild smoothness
assumptions by Krylov and Priola [KP10] who heavily used an auxiliary, deterministic flow associated with
the transport term in (1.1), i.e. for a fixed couple (t, x),{

∂sθs(x) = Aθs(x) + F (s,θs(x)); if s > t

θt(x) = x,
(1.5)

to precisely get rid of the unbounded terms.

The drawback of this approach is that we will need at first to establish Schauder estimates in a small time
interval. This seems quite intuitive since the expansion along the chosen proxy on which the method relies is
precisely designed for small times because it requires that the original operator and the proxy are "close"
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enough in a suitable sense. To obtain the result for an arbitrary but finite time, we will then iterate the
reasoning, which is quite natural since Schauder estimates provide a sort of stability in the considered
functional space. We are therefore far from the optimal constants for the Schauder estimates established in
the non-degenerate, diffusive setting for time dependent coefficients by Krylov and Priola [KP17].

On the other hand, we want to establish the Schauder estimates in the sharpest possible Hölder setting for
the coefficients of the IPDE (1.1). To do so, we will need to establish some subtle controls, in particular we
have no true derivatives of the coefficients. This is the reason why we will heavily rely on duality results
on Besov spaces (see Section 4.1 below, Chapter 3 in [LR02] or [Tri83] for a more complete survey of the
argument). However, in contrast with the non-degenerate case (cf. [CdRMP19]), we will need to ask for the
perturbation F some additional regularity, represented by parameter γi in assumption (R) below, on the
degenerate entries Fi (i > 1). This assumption seems quite natural if we think that, due to the degenerate
structure of the system (cf. Section 2.2 below), the more we descend on the chain, the lower the smoothing
effect of Lα will be. The additional smoothness on F can be then seen as the "price" to pay to re-equilibrate
the increasing time singularities appearing along the chain.

Organization of the paper. The article is organized as follows. We state our precise framework and give
our main results in the following Section 2. Section 3 is then dedicated to the perturbative approach which
is the central argument to derive our estimates. In particular, we obtain therein some Schauder estimates
for drifted operators along the inhomogeneous flow θt,s defined above in (1.5), as well as the key Duhamel
representation for solutions. Since the arguments to show the Schauder estimates will be quite long and
involved, we postpone the proofs of these results in the next Sections 4 and 5. The existence results are then
established in Section 6. In the last Section 7, we are going to explain briefly how the perturbative approach
presented before could be applied with slight modifications to prove Schauder-type estimates for a class of
completely non-linear, locally Hölder continuous drifts with an additional "diffusion" coefficient.
Finally, the proof of some technical results concerning the stability properties of Hölder flows are postponed
to the Appendix.

2 Setting and Main Results
2.1 Considered Operators
The operator Lα we consider is the generator of a non-degenerate, symmetric, stable process and it acts only
on the first d coordinates of the system. More precisely, Lα can be represented for any sufficiently regular
φ : [0, T ]× Rnd → R as

Lαφ(t,x) := p.v.
∫
Rd

[
φ(t,x+By)− φ(t,x)

]
να(dy) where B :=


Id×d
0d×d
...

0d×d


and να is a symmetric, stable Lévy measure on Rd of order α that we assume to be non-degenerate in a sense
that we are going to specify below.
Passing to polar coordinates y = ρs where (ρ, s) ∈ [0,∞)× Sd−1, it is well-known (see for example Chapter 3
in [Sat99]) that the stable Lévy measure να can be decomposed as

να(dy) := dρµ̃(ds)
ρ1+α (2.1)

where µ̃ is a symmetric measure on Sd−1 which represents the spherical part of να.
We remember now that the Lévy symbol associated with Lα is defined through the Levy-Khitchine formula
(see, for instance [Jac05]) as:

Ψ(p) :=
∫
Rd

[
eip·y − 1

]
να(dy) for any p in Rd,

4



where ” · ” represents the inner product on the smaller space Rd. In the current symmetric setting, it can be
rewritten (cf. Theorem 14.10 in [Sat99]) as

Ψ(p) = −
∫
Sd−1
|p · s|α µ(ds) (2.2)

where µ = Cα,dµ̃ is usually called the spherical measure associated with να . Following [Kol00], we then say
that να is non-degenerate if the associated Lévy symbol Ψ is equivalent, up to some multiplicative constant,
to |p|α. More precisely, we suppose that µ is non-degenerate if

(ND) there exists a constant η ≥ 1 such that for any p in Rd.

η−1|p|α ≤
∫
Sd−1
|p · s|α µ(ds) ≤ η|p|α (2.3)

It is important to remark that such a condition does not restrict our model too much. Indeed, there are many
different kind of spherical measures µ that are non-degenerate in the above sense, from the stable-like case,
i.e. measures that are absolutely continuous with respect to the Lebesgue measure on Sd−1, to very singular
ones such that the spherical measure induced by the sum of Dirac masses along the canonical directions:

d∑
i=1

(∂2
xk

)α/2.

We can introduce now the complete Ornstein-Uhlenbeck operator Lou, defined for any sufficiently regular
φ : Rnd → R as

Louφ(x) := 〈Ax, Dxφ(x)〉+ Lαφ(x) (2.4)

where A is the matrix in Rnd × Rnd defined in Equation (1.2). We assume that A satisfies the following
Hörmander-like condition of non-degeneracy:

(H) Ai,i−1 is non-degenerate (i.e. it has full rank d) for any i in J2, nK.

Above, J2, nK denotes the set of all the integers in the interval. It is well known (see for example [Sat99]) that
under these assumptions, the operator Lou generates a convolution Markov semigroup

(
P out

)
t≥0 on Bb(Rnd),

the family of all the bounded and Borel measurable functions on Rnd, defined by{
P out φ(x) =

∫
Rnd φ(x+ y)µt(dy) for t > 0,

P ou0 φ(x) = φ(x).

where
(
µt
)
t>0 is a family of Borel probability measures on Rnd. In particular, the function P out φ(x) provides

the classical solution to the Cauchy problem

{
∂tu(t,x) + Lαu(t,x) + 〈Ax, Dxu(t,x)〉 = 0 on (0,∞)× Rnd,
u(0,x) = φ(x) on Rnd.

(2.5)

Moving to the stochastic counterpart if necessary, it is readily derived from [PZ09] that the semigroup
(P out )t≥0 admits a smooth density pou(t, ·) with respect to the Lebesgue measure on Rnd. Moreover,such a
density pou has the following useful representation:

pou(t,x,y) = 1
detMt

pS(t,M−1
t

(
eAtx− y)

)
(2.6)

where pS is the density of
(
St
)
t≥0, a stable process in Rnd whose Lévy measure satisfies the assumption

(ND) above on Rnd and Mt is a diagonal matrix on Rnd × Rnd given by

[
Mt

]
i,j

:=
{
ti−1Id×d, if i = j

0d×d, otherwise.
(2.7)
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We remark already that the appearance of the matrix Mt in Equation (2.6) and its particular structure reflect
the multi-scaled structure of the dynamics considered (cf. Paragraph below for a more precise explanation).
Moreover, the density pS shows a useful property we will call the smoothing effect since it will be fundamental
to reduce the singularities appearing when working with time integrals. Fixed γ in [0, α), there exists a
constant C := C(γ) such that for any l in J0, 3K,∫

Rnd
|y|γ |Dl

ypS(t,y)| dy ≤ Ct
γ−l
α for any t > 0. (2.8)

These results can be proven following the arguments of Proposition 2.3 and Lemma 4.3 in [HMP19]. We will
provide however a complete proof in the Appendix for the sake of completeness.

2.2 Intrinsic Time Scale and Associated Hölder spaces
In this section, we are going to choose which is the most suitable functional space in which to state our
Schauder estimates.
To answer this question, we need firstly to understand how the system typically behaves. We focus for the
moment on the Ornstein-Uhlenbeck case:(

∂t + Lou
)
u(t,x) = −f(t,x) on (0,∞)× Rnd

and search for a dilation operator δλ : (0,∞) × Rnd → (0,∞) × Rnd that is invariant for the considered
dynamics, i.e. a dilation that transforms solutions of the above equation into other solutions of the same
equation.
Due to the structure of A and the α-stability of ν, we can consider for any fixed λ > 0, the following

δλ(t,x) := (λαt, λx1, λ
1+αx2, . . . , λ

1+α(n−1)xn),

i.e. with a slight abuse of notation,
(
δλ(t,x)

)
0 := λαt and for any i in J1, nK,

(
δλ(t,x)

)
i

:= λ1+α(i−1)xi. It
then holds that (

∂t + Lou
)
u = 0 =⇒

(
∂t + Lou

)
(u ◦ δλ) = 0.

The previous reasoning suggests us to introduce a parabolic distance dP that is homogenous with respect
to the dilation δλ, so that dP

(
δλ(t,x); δλ(s,x′)

)
= λdP

(
(t,x); (s,x′)

)
. Precisely, following the notations in

[HMP19], we set for any s, t in [0, T ] and any x,x′ in Rnd,

dP
(
(t,x), (s,x′)

)
:= |s− t| 1

α +
n∑
j=1
|(x− x′)j |

1
1+α(j−1) . (2.9)

The idea of a dilation δλ that summarizes the multi-scaled behaviour of the dynamics was firstly introduced
by Lanconelli and Polidoro in [LP94] for degenerate Kolmogorov equations in the diffusive setting. Since then,
it has become a "standard" tool in the analysis of degenerate equations (see for example [Lun97], [HMP19] or
[HWZ19]).
Since we will quite always use only the spatial part of the distance dP , we denote for simplicity

d(x,y) =
n∑
j=1
|(x− x′)j |

1
1+α(j−1) . (2.10)

Technically speaking, dP (and thus, d) does not however induce a norm on [0, T ]× Rnd in the usual sense
since it lacks of linear homogeneity. We remark anyhow again that for any λ > 0, it precisely holds that
d
(
δλ(t,x); δλ(s,x′)

)
= λd

(
(t,x); (s,x′)

)
. As it can be seen, dP is an extension of the standard parabolic

distance in the stable case, adapted to respect the multi-scaled nature of our dynamics. Indeed, the exponents
appearing in (2.9) are those which make each space component homogeneous to the characteristic time scale
t1/α.
The appearance of this kind of phenomena is due essentially by the particular structure of the matrix A (cf.
Equation (1.1)) that allows the smoothing effect of Lα, acting only on the first variable, to propagate in the
system, as it can be seen in the following lemma:
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Lemma 1 (Scaling Lemma). Let i be in J1, nK. Then, there exist {Cj}j∈J1,nK positive constants, depending
only from A and i, such that

Dxip
ou(t,x,y) = −

n∑
j=i

Cjt
j−iDyjp

ou(t,x,y)

for any t > 0 and any x, y in Rnd.

Proof. Recalling the representation of pou in Equation (2.6), it is easy to see that

Dxip
ou(t,x,y) = 1

detMt
DzpS(t, ·)

(
M−1
t (eAtx− y)

)
M−1
t Dxi

[
eAtx− y

]
.

Hence, in order to conclude, we need to show that

Dxi
[
eAtx− y

]
= −

n∑
j=i

Cjt
j−iDyj

[
eAtx− y

]
. (2.11)

To prove the above equality, we need to analyze more in depth the structure of the resolvent eAt. Recalling
from Equation (1.2) that A has a sub-diagonal structure, we notice that for any i, j in J1, nK,

[
eAt
]
i,j

=
{
Ci,jt

j−i, if j ≥ i;
0, otherwise,

(2.12)

for a family of constants {Ci,j}i,j∈J1,nK depending only from A. It then follows that for any x,y in Rnd, it
holds that [

eAtx− y
]
i

=
i∑

k=1
Ci,kt

i−kxk − yi. (2.13)

Equation (2.11) then follows immediately. For a more detailed proof of this result, see also [HM16] or
[HMP19].

We finally remark the link with the stochastic counterpart of equation (1.1). From a more probabilistic
point of view, the exponents in equation (2.9), can be related to the characteristic time scales of the iterated
integrals of an α-stable process.

We are now ready to define the suitable Hölder spaces for our estimates. We start recalling some useful
notations we will need below. Fixed k in N ∪ {0} and β in (0, 1), we follow Krylov [Kry96], denoting the
usual homogeneous Hölder space Ck+β(Rd) as the family of functions φ : Rd → R such that

‖φ‖Ck+β :=
k∑
i=1

sup
|ϑ|=i

‖Dϑφ‖L∞ + sup
|ϑ|=k

[Dϑφ]β < ∞

where
[Dϑφ]β := sup

x6=y

|Dϑφ(x)−Dϑφ(y)|
|x− y|β

.

Additionally, we are going to need the associated subspace Ck+β
b (Rd) of bounded functions in Ck+β(Rd),

equipped with the norm
‖ · ‖Ck+β

b
= ‖ · ‖L∞ + ‖ · ‖Ck+β .

We can now define the anisotropic Hölder space with multi-index of regularity associated with the distance d.
For sake of brevity and readability, we firstly define for a function φ : Rnd → R, a point z in Rd(n−1) and i in
J1, nK, the function

Πi
zφ : x ∈ Rd → φ(z1, . . . , zi−1, x, zi+1, zn)
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with the obvious modifications if i = 1 or i = n. Intuitively speaking, the function Πi
zφ is the restriction of φ

on its i-th d-dimensional variable while fixing all the other coordinates in z. The space Ck+β
d (Rnd) is then

defined as the family of all the function φ : Rnd → R such that

‖φ‖Ck+β
d

:=
n∑
i=1

sup
z∈Rd(n−1)

‖Πi
zφ(x)‖

C
k+β

1+α(i−1)
.

The modification to the bounded subspace Ck+β
b,d is straightforward.

Roughly speaking, the anisotropic norm works component-wise, i.e. we firstly fix a coordinate and then
calculate the standard Hölder norm along that particular direction, but with index scaled according to the
dilation of the system in that direction, uniformly over time and the other space components. We conclude
summing the contributions associated with each component.
We highlight however that it is possible to recover the expected joint regularity for the partial derivatives,
when they exist. In such a case, they actually turn out to be Hölder continuous in the pseudo-metric d with
order one less than the function. (cf. Lemma 23 in the Appendix for the case i = 1).

Since we are working with evolution equations, the functions we consider will quite often depend on time,
too. For this reason, we denote by L∞(0, T, Ck+β

d (Rnd)) (respectively, L∞(0, T, Ck+β
b,d (Rnd))) the family of

functions ψ : [0, T ]× Rnd → R with finite Ck+β
d -norm (respectively, Ck+β

b,d -norm), uniformly in time.

2.3 Assumptions and Main Results
From this point further, we consider two fixed numbers α in (0, 2) and β in (0, 1) such that α will represent the
index of stability of the operator Lα while β will stand for the index of Hölder regularity of the coefficients.

From this point further, we assume the following:

(S) assumptions (ND) and (H) are satisfied and the drift F = (F1, . . . ,Fn) is such that for any i in J1, nK,
Fi depends only on time and on the last n− (i− 1) components, i.e. Fi(t,xi, . . . ,xn);

(P) α is a number in (0, 2), β is in (0, 1) such that α+ β ∈ (1, 2) and if α < 1 (super-critical case),

β < α, 1− α < α− β
1 + α(n− 1) ;

(R) Recalling the notations in Section 2.2, the source f is in L∞(0, T ;Cβb,d(Rnd)), the terminal condition g
is in Cα+β

b,d (Rnd) and for any i in J1, nK, Fi belongs to L∞(0, T ;Cγi+βd (Rnd)) where

γi :=
{

1 + α(i− 2), if i > 1;
0, if i = 1.

(2.14)

From now on, we will say that assumption (A) holds when the above conditions (S), (P) and (R) are in
force.
Remark (About the Assumptions). We remark that the constraints (P) we are imposing in the super-critical
case (α < 1) seem quite natural for our system. The condition β < α reflects essentially the low integrability
properties of the stable density pS (cf. Equation (2.8)). Even if one is interested only on the fractional
Laplacian case, i.e. Lα = ∆α/2, such a condition cannot be dropped in general, since it does not refer to the
integrability property of pα and its derivatives but instead to those of its "projection" pS on the bigger space
Rnd (cf. Equation (2.6)).
About the second condition α + β > 1, it is necessary to give a point-wise definition of the gradient of a
solution u with respect to the non-degenerate variable x1. Moreover, there is a famous counterexample of
Tanaka and his collaborators [TTW74] that shows that even in the scalar case, weak uniqueness (a direct
consequence of Schauder estimates) may fail for the associated SDE if α+ β is smaller than one.
The last assumption is indeed a technical constraint and it is necessary to work properly with the perturbation
F at any level i = 1, . . . , n. In particular, it seems the minimal threshold that allows us to exploit the
smoothing effect of the density (see for example Equation (5.31) in the proof of Lemma 12 for more details).
We conclude highlighting that these assumptions are always fulfilled if α ≥ 1 (sub-critical case).
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At this stage, it should be clear that under our assumptions (A), the IPDE (1.1) will be understood in a
distributional sense. Indeed, we cannot hope to find a "classical" solution for (1.1), since for such a function u
in L∞(0, T ;Cα+β

b,d (Rnd)), the total gradient Dxu is not defined point-wise.
Let us denote for any function φ : [0, T ]→ Rnd regular enough, the complete operator Lα as

Lαφ(t,x) := 〈Ax+ F (t,x), Dxu(t,x)〉+ Lαu(t,x). (2.15)

We will say that a function u in L∞(0, T ;Cα+β
b,d (Rnd)) is a distributional (or weak) solution of the IPDE (1.1)

if for any φ in C∞0 ((0, T ]× Rnd), it holds that∫ T

0

∫
Rnd

(
−∂t + L∗α

)
φ(t,y)u(t,y) dy +

∫
Rnd

g(y)φ(T,y) dy = −
∫ T

0

∫
Rnd

φ(t,y)f(t,y) dy (2.16)

where L∗α denotes the formal adjoint of Lα. On the other hand, denoting from now on,

‖F ‖H := sup
i∈J1,nK

‖Fi‖L∞(Cγi+β
d

), (2.17)

we will quite often use the following other notion of solution:
Definition 1. A function u is a mild solution in L∞

(
0, T ;Cα+β

b,d (Rnd)
)
of Equation (1.1) if for any triple of

sequences {fm}m∈N, {gm}m∈N and {Fm}m∈N such that

• {fm}m∈N is in C∞b ((0, T )× Rnd) and fm converges to f in L∞
(
0, T ;Cβb,d(Rnd)

)
;

• {gm}m∈N is in C∞b (Rnd) and gm converges to g in Cα+β
b,d (Rnd);

• {Fm}m∈N is in C∞b ((0, T )× Rnd;Rnd) and ‖Fm − F ‖H converges to 0,

there exists a sub-sequence {um}m∈N in C∞b
(
(0, T )× Rnd

)
such that

• um converges to u in L∞
(
0, T ;Cα+β

b,d (Rnd)
)
;

• for any fixed m in N, um is a classical solution of the following "regularized" IPDE:{
∂tum(t,x) + Lαum(t,x) + 〈Ax+ Fm(t,x), Dxum(t,x)〉 = −fm(t,x) on (0, T )× Rnd,
um(T,x) = gm(x) on Rnd.

(2.18)

We can now state our main result:
Theorem 1. (Schauder Estimates) Let u be a mild solution in L∞

(
0, T ;Cα+β

b,d (Rnd)
)
of Equation (1.1).

Under (A), there exists a constant C := C(T, (A)) such that

‖u‖L∞(Cα+β
d

) ≤ C
[
‖f‖L∞(Cβ

b,d
) + ‖g‖Cα+β

b,d

]
. (2.19)

Associated with an existence result we will exhibit in Section 6, we will eventually derive the well-posedness
for Equation (1.1).
Theorem 2. Under (A), there exists a unique mild solution u in L∞

(
0, T ;Cα+β

b,d (Rnd)
)
of the IPDE (1.1).

Moreover, such a function u is a weak solution, too.

In the following, we will denote for sake of brevity

αi := α

1 + α(i− 1) and βi := β

1 + α(i− 1) for any i in J1, nK. (2.20)

Clearly, these quantities were introduced to reflect exactly the relative scale of the system at every considered
level i (cf. Section 2.2 above).
In the following, as well as in Theorem 1 above, C denotes a generic constant that may change from line
to line but depending only on the parameters in assumption (A). Other dependencies that may occur are
explicitly specified.
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3 Proof through Perturbative Approach
As already said in the Introduction, our method of proof relies on a perturbative approach introduced in
[CdRHM18] for the degenerate, Kolmogorov, diffusive setting.
Roughly speaking, we will firstly choose a suitable proxy for the equation of interest, i.e. an operator whose
associated semigroup and density are known and that is close enough to the original one:

Lα + 〈Ax+ F (t,x), Dx〉.

Furthermore, we will exhibit suitable regularization properties for the proxy and in particular, we will show
that it satisfies the Schauder estimates (2.19). This will be the purpose of the Sub-section 3.1.
In Sub-section 3.2 below, we will then expand a solution u of the IPDE (1.1) along the chosen proxy through
a Duhamel-type formula and eventually show that the expansion error only brings a negligible contribution so
that the Schauder estimates still holds for u. Due to our choice of method, this will be possible only adding
some more assumptions on the system. Namely, we will assume in addition to be in a small time interval, so
that the proxy and the original operator do not differ too much.
The last Sub-section 3.3 will finally show how to remove the additional assumption in order to prove the
Schauder estimates (Theorem 1) through a scaling argument.

3.1 Frozen Semigroup
The crucial element in our approach consists in choosing wisely a suitable proxy operator along which to
expand a solution u in L∞(0, T ;Cα+β

b,d (Rnd)) of Equation (1.1). In order to deal with potentially unbounded
perturbations F , it is natural to use a proxy involving a non-zero first order term associated with a flow
representing the dynamics driven by Ax + F , the transport part of Equation (1.1) (see e.g. [KP10] or
[CdRMP19]).
Remembering that we assume F to be Hölder continuous, we know that there exists a solution of{

dθτ,s(ξ) =
[
Aθτ,s(ξ) + F (s,θτ,s(ξ))

]
ds on [τ, T ],

θτ,τ (ξ) = ξ,

even if it may be not unique. For this reason, we are going to choose one particular flow, denoted by θτ,s(ξ),
and consider it fixed throughout the work.
More precisely, given a freezing couple (τ, ξ) in [0, T ]× Rnd, the flow will be defined on [τ, T ] as

θτ,s(ξ) = ξ +
∫ s

τ

[
Aθτ,v(ξ) + F (v,θτ,v(ξ))

]
dv. (3.1)

We can now introduce the "frozen" IPDE associated with the chosen proxy:{
∂tũ

τ,ξ(t,x) + Lαũ
τ,ξ(t,x) + 〈Ax+ F (t,θτ,t(ξ)), Dxũτ,ξ(t,x)〉 = −f(t,x) on (0, T )× Rnd,

ũτ,ξ(T,x) = g(x) on Rnd.
(3.2)

Remarking that the proxy operator Lα + 〈Ax + F (t,θτ,t(ξ)), Dx〉 can be seen as an Ornstein-Ulhenbeck
operator with an additional time-dependent component F (t,θτ,t(ξ)), it is clear that under assumption (A), it
generates a two parameters semigroups we will denote by

(
P̃ τ,ξt,s

)
t≤s. Moreover, it admits a density given by

p̃τ,ξ(t, s, x, y) = 1
det(Ms−t)

pS
(
s− t,M−1

s−t(y − m̃
τ,ξ
t,s (x))

)
, (3.3)

remembering Equation (2.6) for the definition of pS and with the following notation for the "frozen shift"
m̃τ,ξ
t,s (x):

m̃τ,ξ
t,s (x) = eA(s−t)x+

∫ s

t

eA(s−v)F (v,θτ,v(ξ)) dv. (3.4)

We point out already the following important property of the shift m̃τ,ξ
t,s (x):
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Lemma 2. Let t < s in [0, T ] and x a point in Rnd. Then,

m̃τ,ξ
t,s (x) = θτ,s(ξ), (3.5)

taking τ = t and ξ = x.

Proof. We start noticing that by construction, m̃τ,ξ
t,s (x) satisfies

m̃τ,ξ
t,s (x) = x+

∫ s

t

[
Am̃t,x

t,v (x) + F (v,θτ,v(ξ))
]
dv.

It then holds that
|m̃t,x

t,s (x)− θt,s(x)| ≤
∫ s

t

A|m̃t,x
t,v (x)− θt,v(x)| dv.

The above Equation (3.5) then follows immediately applying the Grönwall lemma.

Moreover, we can extend the smoothing effect (2.8) of pS to the frozen density p̃τ,ξ through the representation
(3.3):
Lemma 3 (Smoothing effects of the frozen density). Let ϑ, % be two multi-indexes in Nn such that |%+ϑ| ≤ 3
and γ in [0, α). Under (A), there exists a constant C := C(ϑ, %, γ) such that∫

Rnd
|D%
yD

ϑ
xp̃

τ,ξ(t, s,x,y)|dγ
(
y, m̃τ,ξ

τ,s(x)
)
dy ≤ C(s− t)

γ
α−
∑n

i=k
ϑk+%k
αk (3.6)

for any t < s in [0, T ], any x in Rnd and any frozen couple (τ, ξ) in [0, T ]× Rnd. In particular, if |ϑ| 6= 0, it
holds for any φ in Cγd (Rnd) that∣∣Dϑ

xP̃
τ,ξ
t,s φ(x)

∣∣ ≤ C‖φ‖Cγ
d

(s− t)
γ
α−
∑n

k=1
ϑk
αk . (3.7)

Proof. Let us start assuming that |ϑ| = 1 and |%| = 1 . The other cases can be treated in a similar way.
Since pS is the density of an α-stable process, we remember that the following α-scaling property

pS(t,y) = t−
nd
α pS(1, t− 1

αy) (3.8)

holds for any t > 0 and any y in Rnd. Fixed i in J1, nK, we then denote for simplicity

Ts−t := (s− t) 1
αMs−t

and we calculate the derivative of p̃τ,ξ with respect to xi through

|Dxi p̃τ,ξ(t, s,x,y)| =
∣∣∣ 1
det(Ms−t)

Dxi
[
pS
(
s− t,M−1

s−t(m̃
τ,ξ
t,s (x)− y)

)
]
∣∣∣

=
∣∣∣ 1
det(Ts−t)

Dxi
[
pS
(
1,T−1

s−t(m̃
τ,ξ
t,s (x)− y)

)
]
∣∣∣

=
∣∣∣ 1
det(Ts−t)

DzpS
(
1, ·
)
(T−1
s−t(m̃

τ,ξ
t,s (x)− y))T−1

s−tDxi(m̃
τ,ξ
t,s (x))

∣∣∣.
where in the second equality we exploited the α-scaling property (3.8). From Equation (2.12) in the Scaling
Lemma 1, we notice now that

∣∣T−1
s−tDxi(m̃

τ,ξ
t,s (x))

∣∣ =
∣∣T−1
s−tDxi

(
eA(t−s)(x)

)∣∣ = (s−t)− 1
α

n∑
k=i

Ck(s−t)−(k−1)(s−t)k−i ≤ C(s−t)−
1+α(i−1)

α

and we use it to show that

|Dxi p̃τ,ξ(t, s,x,y)| ≤ C(s− t)−
1+α(i−1)

α
1

det(Ts−t)
∣∣DzpS(1, ·)(T−1

s−t(m̃
τ,ξ
t,s (x)− y)

)∣∣.
11



Similarly, if we fix j in J1, nK, it holds that

|DyjDxi p̃τ,ξ(t, s,x,y)| ≤ C(s− t)−
1
αi
− 1
αj

1
det(Ts−t)

∣∣D2
zpS

(
1, ·)(T−1

s−t(m̃
τ,ξ
t,s (x)− y)

)∣∣.
It is then easy to show by iteration of the same argument that

|D%
yD

ϑ
xp̃

τ,ξ(t, s,x,y)| ≤ C(s− t)−
∑n

k=1
%k+ϑk
αk

1
det(Ts−t)

∣∣D|%+ϑ|z pS
(
1, ·)(T−1

s−t(m̃
τ,ξ
t,s (x)− y)

)∣∣. (3.9)

Control (3.6) follows immediately from the analogous smoothing effect for pS (cf. Equation (2.8)) and the
change of variables z = T−1

s−t(m̃
τ,ξ
t,s (x)− y). Indeed,∫

Rnd
|D%
yD

ϑ
xp̃

τ,ξ(t, s,x,y)|dγ
(
y, m̃τ,ξ

τ,s(x)
)
dy

≤ C(s− t)−
∑n

k=1
%k+ϑk
αk

∫
Rnd

1
det(Ts−t)

∣∣D|%+ϑ|z pS
(
1, ·
)
(T−1
s−t(m̃

τ,ξ
t,s (x)− y))

∣∣dγ(y, m̃τ,ξ
t,s (x)

)
dy

= (s− t)−
∑n

k=1
%k+ϑk
αk

∫
Rnd

∣∣D|%+ϑ|z pS(1, z)
∣∣dγ(Ts−t(z) + m̃τ,ξ

t,s (x), m̃τ,ξ
t,s (x)

)
dy

To conclude, we notice that

dγ
(
Ts−t(z) + m̃τ,ξ

t,s (x), m̃τ,ξ
t,s (x)

)
≤ C

n∑
i=1
|(s− t)

1+α(i−1)
α zi|

γ
1+α(i−1) = (s− t)

γ
α

n∑
i=1
|zi|

γ
1+α(i−1)

and use it to write that∫
Rnd

∣∣D%
yD

ϑ
xp̃

τ,ξ(t, s,x,y)
∣∣dγ(y, m̃τ,ξ

τ,s(x)
)
dy

≤ C(s− t)
γ
α−
∑n

k=1
%k+ϑk
αk

n∑
i=1

∫
Rnd

∣∣D|%+ϑ|z pS(1, z)
∣∣|zi| γ

1+α(i−1) dy ≤ C(s− t)
γ
α−
∑n

k=1
%k+ϑk
αk

where in the last passage we used the smoothing effect for pS (Equation (2.8)), recalling that for any i in
J1, nK, it holds that

γ

1 + α(i− 1) ≤ γ < α

and we have thus the required integrability.

To prove instead the second inequality (3.7), we use a cancellation argument to write∣∣Dϑ
xP̃

τ,ξ
t,s φ(x)

∣∣ =
∣∣∣∫

Rnd
Dϑ
xp̃

τ,ξ(t, s,x,y)
[
φ(y)− φ(m̃τ,ξ

t,s (x))
]
dy
∣∣∣

≤
∫
Rnd
|Dϑ
xp̃

τ,ξ(t, s,x,y)| |φ(y)− φ(m̃τ,ξ
t,s (x))| dy.

But since we assume φ to be in Cγd (Rnd), we can control the last expression as∣∣Dϑ
xP̃

τ,ξ
t,s φ(x)

∣∣ ≤ ‖φ‖Cγ
d

∫
Rnd

dγ
(
y, m̃τ,ξ

t,s (x)
)
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dy ≤ C‖φ‖Cγ
d

(s− t)
γ
α−
∑n

k=1
ϑk
αk

where in the last passage we used Equation (3.6).

We can define now our candidate to be the mild solution of the "frozen" IPDE. If it exists and it is smooth
enough, such a candidate appears to be the representation of the solution of (3.2) obtained through the
Duhamel principle. For this reason, the following expression:

ũτ,ξ(t, x) := P̃ τ,ξt,T g(x) +
∫ T

t

P̃ τ,ξt,s f(s,x) ds for any (t,x) in [0, T ]× Rnd, (3.10)

will be called the Duhamel representation of the proxy. As it seems, under our assumption (A) such a
representation is robust enough to satisfy Schauder estimates similar to (2.19). Since the proof of this result
is quite long, we will postpone it to Section 4.2 for clarity.
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Proposition 1. (Schauder Estimates for the Proxy) Under (A), there exists a constant C := C(T ) such that

‖ũτ,ξ‖L∞(Cα+β
b,d

) ≤ C
[
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)
]

(3.11)

for any freezing couple (τ, ξ) in [0, T ]× Rnd.

We conclude this section showing that ũτ,ξ is indeed a mild solution in L∞(0, T ;Cα+β
b,d (Rnd)) of the "frozen"

IPDE (3.2). Moreover, the converse statement is also true. If regular enough, any solution of (3.2) corresponds
to the Duhamel representation (3.10).
Proposition 2. Let us assume to be under assumption (A). Then,

• the function ũτ,ξ defined in (3.10) is a mild solution in L∞(0, T ;Cα+β
b,d (Rnd)) of the "frozen" IPDE

(3.2) for any freezing couple (τ, ξ) in [0, T ]× Rnd;

• Fixed a freezing couple (τ, ξ) in [0, T ]× Rnd, let ṽτ,ξ be a mild solution in L∞(0, T ;Cα+β
b,d (Rnd)) of the

IPDE (3.2). Then,

ṽτ,ξ(t, x) = P̃ τ,ξt,T g(x) +
∫ T

t

P̃ τ,ξt,s f(s,x) ds.

Proof. The first assertion is quite straightforward. Let {fm}m∈N, {gm}m∈N and {Fm}m∈N be three sequences
of smooth and bounded coefficients such that fm → f in L∞

(
0, T ;Cβb,d(Rnd)

)
, gm → g in Cα+β

b,d (Rnd) and
‖Fm − F ‖H → 0. Denoting now by

(
P̃m,τ,ξt,s

)
t≤s

the semigroup associated with the "regularized" operator

Lα + 〈Ax+ Fm(t,θτ,t(ξ)), Dx〉,

it is not difficult to show that for any fixed m in N, the following

ũτ,ξm := P̃m,τ,ξt,T gm(x) +
∫ T

t

P̃m,τ,ξt,s fm(s,x) ds

is a classical solution of the "frozen" IPDE (3.2) with regularized coefficients fm, gm and Fm. A detailed
guide of this result can be found, even if in the diffusive setting, in Lemma 3.3 in [KP10]. Using now the
Schauder Estimates (3.11) for the regularized solutions ũτ,ξm , it follows immediately that ũτ,ξm → ũτ,ξ in
L∞
(
0, T ;Cα+β

b,d (Rnd)
)
and thus, that ũτ,ξ is a mild solution of (3.2) in L∞

(
0, T ;Cα+β

b,d (Rnd)
)
.

To prove the second statement, we start fixing a freezing couple (τ, ξ) in [0, T ] × Rnd and consider three
sequences {fm}m∈N, {gm}m∈N and {Fm}m∈N of bounded and smooth coefficients such that fm → f in
L∞
(
0, T ;Cβb,d(Rnd)

)
, gm → g in Cα+β

b,d (Rnd)
)
and ‖Fm − F ‖H → 0. They can be constructed through

mollification.
Since ṽτ,ξ is a mild solution of the "frozen" IPDE (3.2), we know that there exists a sequence {ṽτ,ξm }m∈N of
classical solutions of the "regularized frozen" IPDE (3.2) with coefficients fm, gm and Fm such that ṽτ,ξm → ṽτ,ξ

in L∞
(
0, T ;Cα+β

b,d (Rnd)
)
. Fixed m in N, we then denote

hm(t,x) := ṽτ,ξm
(
t,x−

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)

for any t in [0, T ] and any x in Rnd. Direct calculations imply that

Dxhm(t,x) = Dxṽ
τ,ξ
m

(
t,x−

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)

Lαhm(t,x) = Lαṽ
τ,ξ
m

(
t,x−

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)

and

∂thm(t,x) = ∂tṽ
τ,ξ
m

(
t,x−

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)

+
〈
Fm(t,θτ,t(ξ))−A

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds,Dxṽτ,ξm
(
t,x−

∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)〉
.
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Remembering that ṽτ,ξm is a classical solution of Equation (3.2) replacing therein f , g and F with coefficients
fm, gm and Fm, it follows immediately that the function hm solves for any m in N the following:{

∂thm(t,x) + Lαhm(t,x) + 〈Ax, Dxhm(t,x)〉 = −lm(t,x),
hm(T,x) = gm(x)

(3.12)

where lm(t,x) := fm
(
t,x−

∫ T
t
eA(t−s)Fm(s,θτ,s(ξ)) ds

)
.

Since we are going to exploit reasonings in Fourier spaces, we need however to have integrability properties
on the solution hm. For this reason, we introduce now a family {ρR}R>0 of smooth functions such that any
ρR is equal to 1 in B(0, R) and vanishes outside B(0, R+ 1). We then denote for any R > 0,

hm,R(t,x) := hm(t,x)ρR(x).

It is then straightforward that hm,R solves{
∂thm,R(t,x) + Lαhm,R(t,x) + 〈Ax, Dxhm,R(t,x)〉 = −l̃m,R(t,x),
hm,R(T,x) = gm,R(x)

(3.13)

where gm,R(x) = gm(x)ρR(x) and

l̃m,R(t,x) = ρR(x)lm(t,x)+hm(t,x)LαρR(x)+
∫
Rd

[
hm(t,x+By)−hm(t,x)

][
ρR(x+By)−ρR(x)

]
να(dy).

Noticing now that l̃m,R is integrable with integrable Fourier transform, we can apply the Fourier transform
in space to equation (3.13) in order to write that{

∂tĥm,R(t,p) + Fx
([
Lα + 〈Ax, Dx〉

]
hm,R

)
(t,p) = −̂l̃m,R(t,p),

ĥm,R(T,p) = ĝm,R(p).

We remember in particular that the above operator Lα + 〈Ax, Dx〉 has an associated Lévy symbol Ψou(p)
and, following Section 3.3.2 in [App09], it holds that

Fx
([
Lα + 〈Ax, Dx〉

]
hm,R

)
(t,p) = Ψou(p)ĥm,R(t,p).

We can then use it to show that ĥm,R is a classical solution of the following equation:{
∂tĥm,R(t,p) + Ψou(p)ĥm,R(t,p) = −̂l̃m,R(t,p),
ĥm,R(T,p) = ĝm,R(p).

The above equation can be easily solved by integration in time, giving the following representation of
ĥm,R(t,p):

ĥm,R(t,p) = e(T−t)Ψou(p)ĝm,R(p) +
∫ T

t

e(s−t)Ψou(p)̂ l̃m,R(s,p) ds.

In order to go back to ṽτ,ξm , we apply now the inverse Fourier transform to write that

hm,R(t,x) = P ouT−tgm,R(x) +
∫ T

t

P ous−t l̃m,R(s,x) ds,

remembering that
(
P out

)
t≥0 is the convolution Markov semigroup associated with the Ornstein-Uhlenbeck

operator Lα + 〈Ax, Dx〉. Letting m go to ∞, it then follows immediately that gm,R → gm, hm,R → hm and
l̃m,R → lm. A change of variable allows us to show the Duhamel representation, at least in the regularized
setting:

ṽτ,ξm (t,y) = P ouT−tgm

(
y+
∫ T

t

eA(t−s)Fm(s,θτ,s(ξ)) ds
)

+
∫ T

t

P ous−tfm

(
s,y+

∫ s

t

eA(t−u)Fm(u,θτ,u(ξ)) du
)
ds.

Letting m goes to zero and remembering that ṽτ,ξm → ṽτ,ξ, fm → f , gm → g and Fm → F in the right
functional spaces, we can conclude that ṽτ,ξ = ũτ,ξ.
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3.2 Expansion along the Proxy
We are going to use now the "frozen" IPDE (3.2) in order to derive appropriate quantitative controls of a
solution u of Equation (1.1). Up to now, the freezing parameters (τ, ξ) were set free but they will be later
chosen appropriately depending on the control we aim to establish.
The main idea is to exploit the Duhamel formula (Proposition 2) for the proxy to expand any solution
u of the original IPDE (1.1) along the proxy. To make things more precise, let u be a mild solution in
L
(
0, T ;Cα+β

b,d (Rnd)
)
of the IPDE (1.1). Mollifying if necessary, it is possible to construct three sequences

{fm}m∈N, {gm}m∈N and {Fm}m∈N of bounded and smooth functions with bounded derivatives such that
fm → f in L∞

(
0, T ;Cβb,d(Rnd)

)
, gm → g in Cα+β

b,d (Rnd) and ‖Fm − F ‖H → 0. Since u is a mild solution of
(1.1), we know that there exists a smooth sequence {um}m∈N converging to u in L

(
0, T ;Cα+β

b,d (Rnd)
)
and

such that for any fixed m in N, um solves in a classical sense the "regularized" IPDE (2.18).
Exploiting now that Fm is bounded and smooth, we can define the "regularized" flow θmτ,·(ξ) as the unique
flow satisfying

θmτ,t(ξ) = ξ +
∫ t

τ

[
Aθmτ,s(ξ) + Fm(s,θmτ,s(ξ))

]
ds, t ∈ [τ, T ]. (3.14)

It is then easy to notice that um is also a classical solution in L
(
0, T ;Cα+β

b,d (Rnd)
)
of

∂tum(t,x) + Lαum(t,x) + 〈Ax+ Fm(t,θmτ,t(ξ)), Dxum(t,x)〉 = −
[
fm(t,x) +Rτ,ξm (s,x)

]
on (0, T )× Rnd with terminal condition gm. Above, we have denoted

Rτ,ξm (t,x) := 〈Fm(t,x)− Fm(t,θmτ,t(ξ)), Dxum(t,x)〉. (3.15)

Since clearly, Rτ,ξm is in L∞
(
0, T ;Cα+β

b,d (Rnd)
)
, we can use the Duhamel Formula (Proposition 2) for the proxy

to write that

um(t,x) = P̃m,τ,ξt,T gm(x) +
∫ T

t

P̃m,τ,ξt,s

[
fm(s,x) +Rτ,ξm (s,x)

]
ds, (t,x) ∈ (0, T )× Rnd

where
(
P̃m,τ,ξt,s

)
t≤s

is the semigroup associated with the operator Lα + 〈Ax+ Fm(t,θmτ,t(ξ)), Dx〉.

The reasoning above is summarized in the following Duhamel-type formula that allows to expand any classical
solution um of the "regularized" IPDE (2.18) along the "regularized frozen" proxy.
Proposition 3 (Duhamel Type Formula). Let (τ, ξ) a freezing couple in [0, T ] × Rnd. Under (A), any
classical solution um of the "regularized" IPDE (2.18) can be represented as

um(t,x) = ũτ,ξm (t,x) +
∫ T

t

P̃m,τ,ξt,s Rm,τ,ξ(s,x) ds, (t,x) ∈ (0, T )× Rnd (3.16)

where Rτ,ξm is as in (3.15) and ũτ,ξm is defined through the Duhamel representation (3.10) with the "regularized"
coefficients fm, gm.

Thanks to the above representation (Equation (3.16)), we know that, since we have already shown the suitable
control for the frozen solution uτ,ξm (namely, Proposition 1 with fm, gm), the main term which remains to be
investigated in order to show the Schauder Estimates (Theorem 1) is the remainder∫ T

t

P̃m,τ,ξt,s Rτ,ξm (s,x) ds, (3.17)

that represents exactly the error in the expansion along the proxy.

To be precise, we could have passed to the limit in Equation (3.16) in order to obtain a similar Duhamel-type
formula for a mild solution u in L∞

(
[0, T ];Cα+β

b,d (Rnd)
)
. However, a problem appears when trying to give a

precise meaning at the limit for the remainder contribution (3.17). We already know that the limit exists
point-wise by difference, but for our approach to work, we need to establish precise quantitative controls on
this term. Such estimates could be obtained through duality techniques in Besov spaces (cf. Section 5.1) but
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only at the expense of fixing already the freezing couple as (τ, ξ) = (t,x). The drawback of this method is
that it does not allow to differentiate Equation (3.16), which is needed to estimate Dx1u.

In order to show the suitable estimates for (3.17), we will need at first an additional constraint on the
behaviour of the system. In particular, we will say to be under assumption (A’) when assumption (A) is
considered and if moreover,

(ST) we assume to be in a small time interval, i.e. T ≤ 1.

Under these stronger assumptions, we will then be able to show in Section 5 below that the following control
holds:
Proposition 4 (A Priori Estimates). Let u be a mild solution in L∞

(
[0, T ];Cα+β

b,d (Rnd)
)
of IPDE (1.1).

Under (A’), there exists a constant C ≥ 1 such that

‖u‖L∞(Cα+β
b,d

) ≤ Cc
β−γn
α

0
[
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)
]

+ C
(
c
β−γn
α

0 ‖F ‖H + c
α+β−1

1+α(n−1)
0

)
‖u‖L∞(Cα+β

b,d
) (3.18)

where c0 ∈ (0, 1) is assumed to be fixed but chosen later.

We remark already that in the above control, the constants multiplying ‖u‖L∞(Cα+β
b,d

) have to be small if

one wants to derive the expected Schauder estimates. If c0 is small enough, then Cc
α+β−1

1+α(n−1)
0 can be made

smaller than 1/4. Anyhow, for this chosen small c0, the quantity c
β−γn
α

0 becomes large and therefore, it needs
to be balanced with C‖F ‖H . Namely, we can conclude if for instance, Cc

β−γn
α

0 ‖F ‖H < 1/4 that implies in
particular that ‖F ‖H has to be small with respect to c0.bbbbbbbbb

3.3 Conclusion of Proof
In the first part of this section, we prove the Schauder estimates (Theorem 1) from the A Priori estimates
(Proposition 4) through a suitable scaling procedure. Roughly speaking, the idea is to start from a general
dynamics and then use the scaling procedure to make the Hölder norm ‖F ‖H small enough in order to make
a circular argument work. Again, if c0 and ‖F ‖H are small enough in (3.18), the L∞

(
0, T ;Cα+β

b,d (Rnd)
)
-norm

of u on the right-hand side of (3.18) can be absorbed by the left-hand one. Once the Schauder estimates
(2.19) holds in the scaled dynamics, we will conclude going back to the original IPDE through the inverse
scaling procedure, even if for a small final time horizon T .
The second part of the section focuses on showing how to drop the additional assumption (A’). The key
point here is to proceed through iteration up to an arbitrary, but finite, given time T thanks to the stability
of a solution u in the space L∞([0, T ], Cα+β

b,d (Rnd)).

3.3.1 Scaling Argument

Under (A), we start considering a mild solution u of the IPDE (1.1) on [0, T ] for some final time T ≤ 1 to be
fixed later. For a scaling parameter λ in (0, 1] to be chosen later, we would like to analyze the IPDE (1.1)
under the change of variables

(t,x) 7→ (λt,Tλx) (3.19)

where Tλ := λ1/αMλ. Again, the scaling is performed accordingly to the homogeneity induced by the distance
dP in (2.9).
To this purpose, we firstly introduce the scaled solution uλ defined by

uλ(t,x) := u(λt,Tλx).

It then follows immediately that this function uλ is a mild solution of{
λ−1∂tuλ(t,x) + λ−1Lαuλ +

〈
ATλx+ F (λt,Tλx),T−1

λ Dxuλ(t,x)
〉

= −f(λt,Tλx), on (0, Tλ)× Rnd,
uλ(Tλ,x) = g(Tλx) on Rnd,

where Tλ := T/λ. Since we want the scaled dynamics to satisfy assumption (A′), we choose now T so that
Tλ ≤ 1. It is important to notice that this is possible since we assumed λ to be fixed, even if we have not
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chosen it yet. Denoting now

fλ(t,x) := λf(λt,Tλx);
gλ(x) := g(Tλx);
Aλ := λT−1

λ ATλ;
Fλ(t,x) := λT−1

λ F (λt,Tλx),

we can rewrite the scaled dynamics as:{
∂tuλ(tx) +

〈
Aλx+ Fλ(tx), Dxuλ(tx)

〉
+ Lαuλ(tx) = −fλ(tx), on (0, Tλ)× Rnd,

uλ(Tλ,x) = gλ(x) on Rnd.
(3.20)

To continue, we need now the following lemma that exploits how the scaling procedure reflects on the norms
of the coefficients. Recalling Equation (2.17) for the definition of ‖ · ‖H , a direct calculation on the norms
leads to the following result:
Lemma 4 (Scaling Homogeneity of Norms). Under (A), it holds that

‖Fλ‖H = λβ/α‖F ‖H ;

λ
α+β
α ‖f‖L∞(Cβ

b,d
) ≤ ‖fλ‖L∞(Cβ

b,d
) ≤ ‖f‖L∞(Cβ

b,d
) (3.21)

λ
α+β
α ‖g‖Cα+β

b,d
≤ ‖gλ‖Cα+β

b,d
≤ ‖g‖Cα+β

b,d
;

λ
α+β
α ‖u‖L∞(Cα+β

b,d
) ≤ ‖uλ‖L∞(Cα+β

b,d
) ≤ ‖u‖L∞(Cα+β

b,d
)

Since the scaled dynamics (3.20) satisfies assumption (A’), we know from Proposition 4 that the scaled
solution uλ satisfies the A Priori Estimates (Equation (3.18)):

‖uλ‖L∞(Cα+β
b,d

) ≤ Cc
β−γn
α

0
[
‖gλ‖Cα+β

b,d
+ ‖fλ‖L∞(Cβ

b,d
)
]

+ C
(
c
β−γn
α

0 ‖Fλ‖H + c
α+β−1

1+α(n−1)
0

)
‖uλ‖L∞(Cα+β

b,d
) (3.22)

for some constant c0 in (0, 1] to be chosen later.
We would like now to exploit a circular argument in order to bring to the left-hand side of (3.22) the term
involving uλ on the right-hand one. To do that, we need to choose properly λ and c0 in order to have

C
(
c
β−γn
α

0 ‖Fλ‖H + c
α+β−1

1+α(n−1)
0

)
< 1.

This is true if for example we choose firstly c0 such that

Cc
α+β−1

1+α(n−1)
0 = 1

4
and fixed c0, we choose λ so that

Cc
β−γn
α

0 λβ/α‖F ‖H = Cc
β−γn
α

0 ‖Fλ‖H = 1
4 .

With this choice, it thus follows from (3.22) that

‖uλ‖L∞(Cα+β
b,d

) ≤ 2Cc
β−γn
α

0
[
‖gλ‖Cα+β

b,d
+ ‖fλ‖L∞(Cβ

b,d
)
]
.

We can finally conclude using Lemma 4 to go back to the original dynamics and write that

‖u‖L∞(Cα+β
b,d

) ≤ λ−
α+β
α ‖uλ‖L∞(Cα+β

b,d
) ≤ C

[
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)
]

for some constant C > 0 defined by
C := 2λ−

α+β
α Cc

β−γn
α

0 .
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3.3.2 Schauder Estimates for General Time

Up to this point, we have assumed to be in a small enough final time horizon (i.e. T ≤ 1) to let our procedure
work. We are going now to extend the Schauder estimates (Equation (2.19)) to an arbitrary but fixed final
time T0 > 0. Our proof will consist essentially in a backward iterative procedure through a chain of identical
differential dynamics on different, small enough, time intervals. We recall indeed that the Schauder estimates
precisely provide a stability result in the chosen functional space.
Proposition 5. Under (A), let T0 > T and u a mild solution in L∞(0, T0, C

α+β
b,d (Rnd)) of the IPDE (1.1)

on [0, T0] that satisfies the Schauder Estimates (Equation (2.19)) on [0, T ]. Then, there exists a constant
C0 := C0(T0) such that

‖u‖L∞(0,T0;Cα+β
b,d

) ≤ C0

[
‖f‖L∞(0,T0;Cβ

b,d
) + ‖g‖Cα+β

b,d

]
.

Proof. Fixed N = dT0
T e, we are going to consider a system of N Cauchy problems:{

∂tuk(t,x) +
〈
Ax+ F (t,x), Dxuk(t,x)

〉
+ Lαuk(t,x) = −f(t,x), on ((1− k

N )T0, (1− k−1
N )T0)× Rnd

uk((1− k−1
N )T0,x) = uk−1((1− k−1

N )T0,x) on Rnd.

for k = 1, . . . , N with the notation that u0(T0,x) = g(x). Reasoning iteratively, we find that any mild
solution of the IPDE (1.1) on [0, T0] is also a mild solution of any of the equations of the system. Moreover,
since any solution uk is defined on [(1− k

N )T0, (1− k−1
N )T0] and

(1− k − 1
N

)T0 − (1− k

N
)T0 = k

N
T0 −

k − 1
N

T0 = 1
N
T0 ≤ T,

the Schauder Estimates (Equation (1)) hold for any uk with terminal condition uk−1((1 − k−1
N )T0, ·). In

particular,

‖uk‖L∞((1− k
N )T0,(1− k−1

N )T0;Cα+β
b,d

) ≤ C
[
‖f‖L∞((1− k

N )T0,(1− k−1
N )T0;Cβ

b,d
) + ‖uk−1((1− k − 1

N
)T0, ·)‖Cα+β

b,d

]
≤ C2

[
‖f‖L∞((1− k

N )T0,(1− k−1
N )T0;Cβ

b,d
) + ‖f‖L∞((1− k−1

N )T0,(1− k−2
N )T0;Cβ

b,d
) + ‖uk−2((1− k − 2

N
)T0, ·)‖Cα+β

b,d

]
≤ C2

[
‖f‖L∞((1− k

N )T0,(1− k−2
N )T0;Cβ

b,d
) + ‖uk−2((1− k − 2

N
)T0, ·)‖Cα+β

b,d

]
since uk−1 satisfies the Schauder Estimates with terminal condition uk−2((1− k−2

N )T0, ·). Applying the same
procedure recursively, we finally find that

‖uk‖L∞((1− k
N )T0,(1− k−1

N )T0;Cα+β
b,d

) ≤ Ck
[
‖f‖L∞((1− k

N )T0,T0;Cβ
b,d

) + ‖g‖Cα+β
b,d

]
.

Hence,
‖u‖L∞(0,T0;Cα+β

b,d
) ≤ CN

[
‖f‖L∞(0,T0;Cβ

b,d
) + ‖g‖Cα+β

b,d

]
and we have concluded.

4 Schauder Estimates for the Proxy
The aim of this section is to show how to properly control a solution ũτ,ξ of the "frozen" IPDE (3.2) in order
to prove the Schauder estimates (Proposition 1) for the proxy. We recall the definition of ũτ,ξ through the
Duhamel representation (3.10). Namely, for any freezing couple (τ, ξ) in [0, T ]× Rnd, it holds that

ũτ,ξ(t,x) = P̃ τ,ξt,T g(x) + G̃τ,ξt,T f(t,x) (4.1)

where we have denoted for simplicity with
(
G̃τ,ξv,r

)
t>v≥0 the family of Green kernels associated with the frozen

density p̃τ,ξ. Namely, for any v < r in [0, T ],

G̃τ,ξv,rf(t, x) :=
∫ r

v

∫
Rnd

p̃τ,ξ(t, s,x,y)f(s,y) dy ds. (4.2)

18



We can then differentiate the above equation with respect to x1 so that to obtain an analogous Duhamel
type representation for the derivative Dx1 ũ

τ,ξ:

Dx1 ũ
τ,ξ(t,x) = Dx1 P̃

τ,ξ
t,T g(x) +Dx1G̃

τ,ξ
t,T f(t,x) (4.3)

It is then clear that in order to control ũτ,ξ(t,x) in the norm ‖ · ‖L∞(Cα+β
b,d

), we can analyze separately
the contributions appearing from the frozen semigroup P̃ τ,ξg(x) and those from the frozen Green kernel
G̃τ,ξt,T f(t,x).

4.1 First Besov Control
We focus for the moment on the contribution in the Duhamel representation (4.1) associated with the source
g that, as it will be seen, is the more delicate to treat. In the non-degenerate setting (i.e. with respect to x1),
it precisely write:

Dx1 P̃
τ,ξg(x) =

∫
Rnd

Dx1 p̃
τ,ξ(t, T,x,y)g(y) dy.

Looking at the particular structure of p̃τ,ξ (cf. Equation (3.3)), it can be seen from Lemma 1 that
Lemma 5. Let i in J1, nK. Then, there exist constants {Cj}j∈Ji,nK such that

Dxi p̃
τ,ξ(t, s,x,y) =

n∑
j=i

Cj(s− t)j−iDyj p̃τ,ξ(t, s,x,y) (4.4)

for any t < s in [0, T ], any x,y in Rnd and any freezing couple (τ, ξ) in [0, T ]× Rnd.

We can now use equation (4.4) to rewrite Dx1 P̃
τ,ξg(x) as

∣∣Dx1 P̃
τ,ξg(x)

∣∣ =
∣∣∣∫

Rnd
Dx1 p̃

τ,ξ(t, T,x,y)g(y) dy
∣∣∣ ≤ C

n∑
j=1

(s−t)j−1
∣∣∣∫

Rnd
Dyj p̃

τ,ξ(t, T,x,y)g(y) dy
∣∣∣. (4.5)

Remembering that g is in Cα+β
b,d (Rnd) for α + β > 1 by hypothesis, we know that it is differentiable with

respect to the first (non-degenerate) variable x1. Then, the above expression can be controlled easily for
j = 1 as∣∣∣∫

Rnd
Dy1 p̃

τ,ξ(t, T,x,y)g(y) dy
∣∣∣ =

∣∣∣∫
Rnd

p̃τ,ξ(t, T,x,y)Dy1g(y) dy
∣∣∣ ≤ ‖Dy1g‖L∞ ≤ ‖g‖Cα+β

b,d

using integration by parts formula. We can then focus on the degenerate components in (4.5), i.e.∣∣∣∫
Rnd

Dyj p̃
τ,ξ(t, T,x,y)g(y) dy

∣∣∣ (4.6)

for some j > 1. Since g is not differentiable with respect to yj if j > 1, we cannot apply the same reasoning
above but we will need a more subtle control. Our main idea will be to use the duality in Besov spaces to
derive bounds for expression (4.6). Namely, we introduce for a given y in Rd,

yrj := (y1, . . . ,yj−1,yj+1, . . . ,yn) ∈ R(n−1)d.

With this definition at hand, we then denote for any function φ on Rnd, the function φ(yrj , ·) on Rd with a
slight abuse of notation as

φ(yrj , z) := φ(y1, . . . ,yj−1, z,yj+1, . . . ,yn). (4.7)
The key point now is to control the Hölder modulus of g(yrj , ·) on Rd, uniformly in yrj ∈ R(n−1)d. To do
so, we will need the identification Cαj+βjb (Rd) = B

αj+βj
∞,∞ (Rd) with the usual notations for the Besov spaces.

We recall now some useful definitions/characterizations about Besov spaces Bγ̃p,q(Rd). For a more detailed
analysis of this argument, we suggest the reader to see Section 2.6.4 of Triebel [Tri83]. For γ̃ in (0, 1), q, p in
(0,+∞], we define the Besov space of indexes (γ̃, p, q) on Rd as:

Bγ̃p,q(Rd) := {f ∈ S′(Rd) : ‖f‖Hγ̃
p,q

< +∞}
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where S(Rd) denotes the Schwartz class on Rd and

‖f‖Hγ̃
p,q

:= ‖(φ0f̂)∨‖Lp +
(∫ 1

0
v−

γ̃
α ‖∂vph(v, ·) ∗ f‖qLp dv

) 1
q (4.8)

with φ0 a function in C∞0 (Rd) such that φ0(0) 6= 0 and ph the isotropic α-stable heat kernel on Rd, i.e. the
stable density on Rd whose Lévy symbol is equivalent to |λ|α.
We point out that the quantities in (4.8) are well-defined for any q 6= +∞. The modifications for q = +∞
are obvious and can be written passing to the limit. The previous definition of Bγ̃p,q(Rd) is known as the
stable thermic characterization of Besov spaces and it is particularly adapted to our framework. By a little
abuse of notation, we will write ‖f‖Bγ̃p,q := ‖f‖Hγ̃

p,q
when this quantity is finite.

For the heat-kernel ph, it is possible to show an improvement of the smoothing effect (cf. equation (2.8)),
due essentially to its better decay at infinity. Namely, we are no more bounded to the condition γ < α but
we can integrate up to an order γ strictly smaller than 1 + α.
Lemma 6 (Smoothing Effect of the Isotropic Stable Heat-Kernel). Let l be in {1, 2} and γ in [0, 1 + α).
Then, there exists a positive constant C := C(γ) such that∫

Rd
|y|γ |∂vDl

yph(v, y)| dy ≤ Ct
γ−l
α −1. (4.9)

A proof of the above result can be derived using the estimates of Kolokoltsov [Kol00] (see also [BJ07]).

As already indicated before, it can be seen from the α−thermic characterization (4.8) that

C γ̃b (Rd) = Bγ̃∞,∞(Rd). (4.10)

Moreover, it is well known (see for example Proposition 3.6 in [LR02]) that Bγ̃∞,∞(Rd) and B−γ̃1,1 (Rd) are in
duality. Namely, it holds ∣∣∫

Rd
fg dx

∣∣ ≤ C‖f‖Bγ̃∞,∞‖g‖B−γ̃1,1
. (4.11)

for any f in Bγ̃∞,∞(Rd) and any function g in B−γ̃1,1 (Rd).

With these definitions and properties at hand, we can now go back at expression (4.6) to write that∣∣∣∫
Rnd

Dyj p̃
τ,ξ(t, T,x,y)g(y) dy

∣∣∣ ≤ ∫
R(n−1)d

∣∣∣Dyj p̃τ,ξ(t, T,x,y)g(y)dyj
∣∣∣dyrj

≤
∫
R(n−1)d

∥∥∥Dyj p̃τ,ξ(t, T,x,yrj , ·)∥∥∥
B
−(αj+βj)
1,1

∥∥∥g(yrj , ·)
∥∥∥
B
αj+βj
∞,∞

dyrj

≤ ‖g‖Cα+β
b,d

∫
R(n−1)d

∥∥∥Dyj p̃τ,ξ(t, T,x,yrj , ·)∥∥∥
B
−(αj+βj)
1,1

dyrj .

In order to control the above quantities, we will then need a control on the integral of the Besov norms of the
derivatives of the proxy. Since however an additional derivative with respect to x1 will often appear, for
example in Equation (4.24) below, we state the following result in a more general way.
Lemma 7 (First Besov Control). Let j be in J2, nK and l ∈ {0, 1}. Under (A), there exists a constant
C := C(j, l) such that∫

R(n−1)d

∥∥∥DyjDl
x1
p̃τ,ξ(t, s,x,yrj , ·)

∥∥∥
B
−(αj+βj)
1,1

dyrj ≤ C(s− t)
α+β
α −

1
αj
− l
α

for any t < s in [0, T ], any x in Rnd and any frozen couple (τ, ξ) in [0, T ]× Rnd.

Proof. To control the Besov norm in B−(αj+βj)
1,1 (Rd), we are going to use the stable thermic characterization

(4.8) with γ̃ = −(αj + βj). We start considering the second term in the characterization, i.e.∫ 1

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
∂vph(v, z − yj)DyjDl

x1
p̃τ,ξ(t, s,x,y) dyj

∣∣∣ dzdv.
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Fixed a constant δj ≥ 1 to be chosen later, we split the integral with respect to v in two components:

‖DyjDl
x1
p̃τ,ξ(t, s,x,yrj , ·)‖

B
−(αj+βj)
1,1

=
∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
∂vph(v, z − yj)DyjDl

x1
p̃τ,ξ(t, s,x,y) dyj

∣∣∣ dzdv
+
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
∂vph(v, z − yj)DyjDl

x1
p̃τ,ξ(t, s,x,y) dyj

∣∣∣ dzdv =:
(
I1 + I2

)
(yrj).

The second component I2 has no time-singularity and can be easily controlled by

I2(yrj) =
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj)⊗Dl

x1
p̃τ,ξ(t, s,x,y) dyj

∣∣∣ dzdv
using integration by parts formula and noticing that Dyjph(v, z − yj) = −Dzph(v, z − yj). Then,

I2(yrj) ≤
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

∫
Rd
|Dz∂vph(v, z − yj)| |Dl

x1
p̃τ,ξ(t, s,x,y)| dyj dzdv.

We can then use Fubini theorem to separate the integrals and apply the smoothing effect of the heat-kernel
ph (Lemma 6) to show that

I2(yrj) ≤
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

(∫
Rd
|Dz∂vph(v, z − yj)| dz

)
|Dl
x1
p̃τ,ξ(t, s,x,y)| dyjdv

≤ C
(∫ 1

(s−t)δj
v
αj+βj−1

α −1 dv
)(∫

Rd
|Dl
x1
p̃τ,ξ(t, s,x,y)| dyj

)
≤ C(s− t)

δj(αj+βj−1)
α

∫
Rd
|Dl
x1
p̃τ,ξ(t, s,x,y)| dyj .

Using the smoothing effect (Equation (3.6)) of the frozen density p̃τ,ξ, we have thus found that∫
R(n−1)d

I2(yrj) dyrj ≤ (s− t)
δj(αj+βj−1)

α

∫
Rnd
|Dl
x1
p̃τ,ξ(t, s,x,y)| dy ≤ C(s− t)

δj(αj+βj−1)−l
α . (4.12)

On the other hand, the term I1 needs a more delicate treatment in order to avoid time-integrability problems.
We start using a cancellation argument with respect to the derivative ∂vph of the heat-kernel to rewrite I1 as

I1(yrj) =∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
∂vph(v, z − yj)

[
DyjD

l
x1
p̃τ,ξ(t, s,x,y)−DyjDl

x1
p̃τ,ξ(t, s,x,yrj , z)

]
dyj

∣∣∣ dzdv
=
∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj)⊗

[
Dl
x1
p̃τ,ξ(t, s,x,y)−Dl

x1
p̃τ,ξ(t, s,x,yrj , z)

]
dyj

∣∣∣ dzdv
where in the second passage we used again integration by parts formula to move the derivative to ph and
the equality Dyjph(v, z − yj) = −Dzph(v, z − yj). We can then apply a Taylor expansion with respect to
variable yj to write that

I1(yrj) =∫ (s−t)δi

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj)

∫ 1

0
DyjD

l
x1
p̃τ,ξ(t, s,x,yrj ,yj + λ(z − yj)) · (z − yj) dµdyj

∣∣∣ dzdv
≤
∫ (s−t)δi

0
v
αj+βj
α

∫
Rd

∫
Rd

∫ 1

0
|Dz∂vph(v, z−yj)| |DyjDl

x1
p̃τ,ξ(t, s,x,yrj ,yj+λ(z−yj))| |z−yj | dλdyjdzdv
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We can then use Fubini theorem and changes of variables z̃ = z− yj (fixed yj) and ỹj = yj + λz̃ (considering
z̃ and λ fixed) to separate the integrals so that

I1(yrj) ≤
∫ (s−t)δi

0
v
αj+βj
α

(∫
Rd
|Dz∂vph(v, z̃)| |z̃| dz

)(∫
Rd
|DyjDl

x1
p̃τ,ξ(t, s,x,yrj , ỹj)| dyj

)
dv.

The smoothing effect of the heat-kernel ph (Lemma 6) allows now to control the first term:

I1(yrj) ≤ C
(∫ (s−t)δi

0
v
αj+βj−1

α dv
)(∫

Rd
|DyjDl

x1
p̃τ,ξ(t, s,x,yrj , z + λ(yj − z))| dyj

)
≤ C(s− t)δj

αj+βj
α

∫
Rd
|DyjDl

x1
p̃τ,ξ(t, s,x,yrj , z + λ(yj − z))| dyj .

It then follows using the smoothing effect of the frozen semigroup (Lemma 3) that∫
R(n−1)d

I1(yrj) dyrj ≤ C(s− t)δj
αj+βj
α

∫
Rnd
|DyjDl

x1
p̃τ,ξ(t, s,x,yrj , z + λ(yj − z))| dy

≤ C(s− t)δj
αj+βj
α − l

α−
l
αj . (4.13)

Going back to equations (4.12) and (4.13), we notice that we need δj to be such that

δj
[αj + βj

α

]
= α+ β

α
and δj

[αj + βj − 1
α

]
= α+ β

α
− 1
αj
.

Recalling Equation (2.20) for the relative definitions, we can thus conclude choosing δj = (α+β)/(αj +βj) =
1 + α(j − 1).
Reproducing the previous computations, we can also write for a test function in φ0 in C∞0 (Rd),∫

R(n−1)d

∥∥∥(φ0
(
DyjD

l
x1
p̃τ,ξ(t, s,x,yrj , ·)

)ˆ)∨∥∥∥
L1
dyrj

=
∫
R(n−1)d

∫
Rd

∣∣∣∫
Rd
Dyj φ̂0(z − yj) ·Dl

x1
p̃τ,ξ(t, s,x,y) dyj

∣∣∣ dzdyrj
≤ C

∫
Rnd
|Dl
x1
p̃τ,ξ(t, s,x,y)| dy ≤ C(s− t)− l

α .

4.2 Proof of Proposition 1
Thanks to the First Besov Control (Lemma 7), we are now ready to prove the Schauder Estimates for the
proxy (Proposition 1). Such a proof will be divided in three parts: the estimates for the supremum norms of
the solution and its non-degenerate gradient are stated in Lemma 8 while the controls of the Hölder moduli
of the solution and its gradient with respect to the non-degenerate variable are given in Lemmas 9 and 10,
respectively.
Lemma 8. (Controls on Supremum Norm) Under (A), there exists a constant C := C(T ) ≥ 1 such that for
any freezing couple (τ, ξ) in [0, T ]× Rnd, any t in [0, T ] and any x in Rnd,

|ũτ,ξ(t,x)|+ |Dx1 ũ
τ,ξ(t,x)| ≤ C

[
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)

]
.

Proof. We start noticing that P̃ τ,ξt,T g(x) and G̃τ,ξt,T f(t,x) can be easily bounded using the supremum norm of
f and g, respectively.
Moreover, we can use the controls on the frozen semigroup (Equation (3.7)) to control Dx1G̃

τ,ξ
t,T f(t,x). Indeed,

∣∣Dx1G̃
τ,ξ
t,T f(t,x)

∣∣ ≤ ∫ T

t

∣∣Dx1 P̃
τ,ξ
t,s f(s,x)

∣∣ ds ≤ C(T − t)
α+β−1
α ‖f‖L∞(Cβ) ≤ CT

α+β−1
α ‖f‖L∞Cβ)
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remembering in the last inequality that α+ β − 1 > 0 by hypothesis (P).
It remains to control Dx1 P̃

τ,ξ
t,T g(x). As shown the previous Sub-section 4.1, we start using the scaling lemma

5 to write that∣∣Dx1 P̃
τ,ξ
t,T g(x)

∣∣ =
∣∣∣∫

Rnd
Dx1 p̃

τ,ξ(t, T,x,y)g(y) dy
∣∣∣

≤ C

n∑
j=1

(T − t)j−1
∣∣∣∫

Rnd
Dyj p̃

τ,ξ(t, T,x,y)g(y) dy
∣∣∣ =: C

n∑
j=1

(T − t)j−1Jj .

Since g is differentiable in the first, non-degenerate variable x1, the contribution J1 can be easily bounded
using integration by parts formula:

J1 =
∣∣∣∫

Rnd
p̃τ,ξ(t, T,x,y)Dy1g(y) dy

∣∣∣ ≤ ‖Dy1g‖L∞ ≤ ‖g‖Cα+β
b,d

. (4.14)

To control the other terms Jj for j > 1, we use instead the duality in Besov spaces (4.11) and the identification
(4.10), so that

Jj ≤ C‖g‖Cα+β
b,d

∫
R(n−1)d

‖Dyj p̃τ,ξ(t, T,x,yrj , ·)‖B−(αj+βj)
1,1

dyrj ≤ C‖g‖Cα+β
b,d

(T − t)
α+β
α −

1
αj (4.15)

where in the last inequality we applied the first Besov Control (Lemma 7).
Looking back at equations (4.14) and (4.15), it finally holds that

∣∣Dx1 P̃
τ,ξ
t,T g(x)

∣∣ ≤ C‖g‖Cα+β
b,d

(
1 +

n∑
j=2

(T − t)j−1(T − t)
α+β
α −

1
αj
)
≤ C

(
1 + T

α+β−1
α

)
‖g‖Cα+β

b,d

where in the last passage we used again that α+ β − 1 > 0 by hypothesis (P).

Before starting with the calculations on the Hölder modulus. For fixed (t,x,x′) in [0, T ]×R2nd, we will need
to distinguish two cases. We will say that the off-diagonal regime holds if T − t ≤ c0dα(x,x′) for a constant
c0 to be specified but meant to be smaller than 1. This means in particular that the spatial distance is larger
than the characteristic time-scale up to the prescribed constant c0 which will be useful further on in the
computations for a circular argument.
On the other hand, we will say that the global diagonal regime is in force when T − t ≥ c0dα(x,x′) and the
spatial points are instead closer than the typical time-scale magnitude. In particular, when a time integration
is involved (for example in the control of the frozen Green kernel), the same two regime appears even if in a
local base. Considering a variable s in [t, T ], there are again a local off-diagonal regime if s− t ≤ c0dα(x,x′)
and a local diagonal regime when s− t ≥ c0dα(x,x′). In particular we will denote with t0 the critical time at
which a change of regime occurs in the globally diagonal regime. Namely,

t0 :=
(
t+ c0d

α(x,x′)
)
∧ T. (4.16)

We highlight however that this approach was already used in [CdRHM18] to obtain Schauder estimates for
degenerate Kolmogorov equations and can be adapted in the current setting.

Moreover, it is important to notice that the norm ‖ · ‖Cα+β
d

is essentially defined as the sum of the norms
‖ · ‖

C
α+β

1+α(i−1)
with respect to the i-th variable and uniformly on the other components. Thus, there is a big

difference between the case i = 1 where α+ β is in (1, 2) and we have to deal with a proper derivative and
the other situations (i > 1) where instead (α+ β)/(1 + α(i− 1)) < 1 and the norm is calculated directly on
the function. For this reason, we are going to analyze the two cases separately. Lemma 9 will work on the
non-degenerate setting (i = 1) while Lemma 10 will concern the degenerate one (i > 1).
Lemma 9 (Controls on Hölder Moduli: Non-Degenerate). Let x,x′ be in Rnd such that xj = x′j for any
j 6= 1. Under (A), there exists a constant C ≥ 1 such that for any t in [0, T ] and any freezing couple (τ, ξ) in
[0, T ]× Rnd, it holds that∣∣Dx1 ũ

τ,ξ(t,x)−Dx1 ũ
τ,ξ(t,x′)| ≤ Cc

α+β−2
α

0
(
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)
)
dα+β−1(x,x′).
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Before proving the above result, we point out the control on the Hölder modulus of ũτ,ξ with respect to the
degenerate variables (i > 1):
Lemma 10 (Controls on Hölder Moduli: Degenerate). Let i be in J2, nK and x,x′ in Rnd such that xj = x′j
for any j 6= i. Under (A), there exists a constant C := C(i) such that for any t in [0, T ] and any freezing
couple (τ, ξ) in [0, T ]× Rnd, it holds that∣∣ũτ,ξ(t,x)− ũτ,ξ(t,x′)| ≤ Cc

β−γi
α

0
(
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
)
)
dα+β(x,x′).

Proof of Lemma 9 Controls on frozen semigroup. Let us consider firstly the off-diagonal regime, i.e. the
case T − t ≤ c0dα(x,x′). Using the scaling lemma 5, it holds that

Dx1 P̃
τ,ξ
t,T g(x) =

∫
Rnd

Dx1 p̃
τ,ξ(t, T,x,y)g(y) dy =

n∑
j=1

Cj(T − t)j−1
∫
Rnd

Dyj p̃
τ,ξ(t, T,x,y)g(y) dy.

It then follows that

∣∣Dx1 P̃
τ,ξ
t,T g(x)−Dx1 P̃

τ,ξ
t,T g(x′)

∣∣ ≤ C

n∑
j=1

(T − t)j−1
∣∣∣∫

Rnd

[
Dyj p̃

τ,ξ(t, T,x,y)−Dyj p̃τ,ξ(t, T,x′,y)
]
g(y) dy

∣∣∣
=: C

n∑
j=1

(T − t)j−1Iodj . (4.17)

We are going to treat separately the cases j = 1 and j > 1 for the off-diagonal contributions
(
Iodj
)
j∈J1,nK.

Indeed, the function g is differentiable only with respect to the first component y1. In this first case, we can
apply integration by parts formula to move the derivative on g, so that

Iod1 =
∣∣∣∫

Rnd

[
p̃τ,ξ(t, T,x,y)− p̃τ,ξ(t, T,x′,y)

]
Dy1g(y) dy

∣∣∣.
Noticing that Dy1g is in Cα+β−1

b,d (Rnd) thanks to the reverse Taylor expansion (Lemma 23), the last expression
can be then rewritten as

Iod1 ≤
∣∣∣∫

Rnd
p̃τ,ξ(t, T,x,y)

[
Dy1g(y)±Dy1g(m̃τ,ξ

t,T (x))
]
− p̃τ,ξ(t, T,x′,y)

[
Dy1g(y)±Dy1g(m̃τ,ξ

t,T (x′))
]
dy
∣∣∣

≤ C‖g‖Cα+β
b,d

{∫
Rnd

[
p̃τ,ξ(t, T,x,y)dα+β−1(y, m̃τ,ξ

t,T (x)) + p̃τ,ξ(t, T,x′,y)dα+β−1(y, m̃τ,ξ
t,T (x′))

]
dy

+ dα+β−1(m̃τ,ξ
t,T (x), m̃τ,ξ

t,T (x′))
}

(4.18)

Now, we use the smoothing effect of p̃τ,ξ (Equation (3.6)) to control the two integrals in the last expression,
so that

Iod1 ≤ C‖g‖Cα+β
b,d

[
(T − t)

α+β−1
α + dα+β−1(m̃τ,ξ

t,T (x), m̃τ,ξ
t,T (x′))

]
.

We can then conclude the case j = 1 recalling that the mapping x→ m̃τ,ξ
t,T (x) is affine (see Equation (3.4)

for definition of m̃τ,ξ
t,T (x)) in order to show that

Iod1 ≤ C‖g‖Cα+β
b,d

[
(T − t)

α+β−1
α + dα+β−1(x,x′)

]
. (4.19)

Let us consider now the case j > 1. Using the duality in Besov spaces (Equation (4.11)) and the identification
(4.10), we can write from Equation (4.17) that

Iodj ≤ C‖g‖Cα+β
b,d

∫
R(n−1)d

‖Dyj p̃τ,ξ(t, T,x,yrj , ·)−Dyj p̃τ,ξ(t, T,x′,yrj , ·)‖B−(αj+βj)
1,1

dyrj

≤ C‖g‖Cα+β
b,d

∫
R(n−1)d

‖Dyj p̃τ,ξ(t, T,x,yrj , ·)‖B−(αj+βj)
1,1

+ ‖Dyj p̃τ,ξ(t, T,x′,yrj , ·)‖B−(αj+βj)
1,1

dyrj

≤ C‖g‖Cα+β
b,d

(T − t)
α+β
α −

1
αj (4.20)
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where in the last inequality we applied the first Besov Control (Lemma 7). Going back at equations (4.19)
and (4.20), we finally conclude that

∣∣Dx1 P̃
τ,ξ
t,T g(x)−Dx1 P̃

τ,ξ
t,T g(x′)

∣∣ ≤ C‖g‖Cα+β
b,d

[
(T − t)

α+β−1
α +dα+β−1(x,x′) +

n∑
j=2

(T − t)j−1(T − t)
α+β
α −

1
αj
]

≤ C‖g‖Cα+β
b,d

[
(T − t)

α+β−1
α + dα+β−1(x,x′)

]
≤ C‖g‖Cα+β

b,d
dα+β−1(x,x′) (4.21)

where in the last passage we used that T − t ≤ c0dα(x,x′) for some c0 ≤ 1.
We focus now on the diagonal regime, i.e. when T − t > c0d

α(x,x′). Remembering that we assumed that
xj = x′j for any j in J2, nK, we start using a Taylor expansion on the density p̃τ,ξ with respect to the first,
non-degenerate variable x1. Namely,

Dx1 P̃
τ,ξ
t,T g(x)−Dx1 P̃

τ,ξ
t,T g(x′) =

∫
Rnd

[
Dx1 p̃

τ,ξ(t, T,x,y)−Dx1 p̃
τ,ξ(t, T,x′,y)

]
g(y) dy

=
∫
Rnd

∫ 1

0
D2
x1
p̃τ,ξ

(
t, T,x′ + λ(x− x′),y

)
(x− x′)1g(y) dλdy.

Moreover, from the Scaling Lemma 5, it holds that

D2
x1
p̃τ,ξ

(
t, T,x′ + λ(x− x′),y

)
=

n∑
j=1

Cj(T − t)j−1DyjDx1 p̃
τ,ξ
(
t, T,x′ + λ(x− x′),y

)
and we can use it to write∣∣Dx1 P̃

τ,ξ
t,T g(x)−Dx1 P̃

τ,ξ
t,T g(x′)

∣∣
≤ C|(x− x′)1|

n∑
j=1

(T − t)j−1
∣∣∣∫ 1

0

∫
Rnd

DyjDx1 p̃
τ,ξ
(
t, T,x′ + λ(x− x′),y

)
g(y) dydλ

∣∣∣
=: C|(x− x′)1|

n∑
j=1

(T − t)j−1Idj . (4.22)

Similarly to the off-diagonal regime, we are going to treat separately the cases j = 1 and j > 1 for the
diagonal contributions

(
Idj
)
j∈J1,nK. In the first case, we can apply integration by parts formula to show that

Id1 =
∣∣∣∫ 1

0

∫
Rnd

Dx1 p̃
τ,ξ
(
t, T,x′ + λ(x− x′),y

)
⊗Dy1g(y) dydλ

∣∣∣.
A cancellation argument with respect to Dx1 p̃

τ,ξ then leads to

Id1 =
∣∣∣∫ 1

0

∫
Rnd

Dx1 p̃
τ,ξ(t, T,x′ + λ(x− x′),y)⊗

[
Dy1g(y)−Dy1g(m̃τ,ξ

t,T (x′ + λ(x− x′)))
]
dydλ

∣∣∣
≤ C‖g‖Cα+β

b,d

∫ 1

0

∫
Rnd
|Dx1 p̃

τ,ξ(t, T,x′ + λ(x− x′),y)|dα+β−1(y, m̃τ,ξ
t,T (x′ + λ(x− x′))

)
dydλ.

Since α+ β − 1 < α by hypothesis (P), we can conclude using the smoothing effect of p̃τ,ξ (Lemma 3) to
show that

Id1 ≤ C‖g‖Cα+β
b,d

(T − t)
α+β−2
α . (4.23)

For the case j > 1, we use instead the duality in Besov spaces (4.11) and the identification (4.10) to write

Idj ≤
∫ 1

0

∫
R(n−1)d

‖DyjDx1 p̃
ξ(t, T,x′ + λ(x− x′),yrj , ·)‖

B
−(αj+βj)
1,1

dyrjdλ

≤ C‖g‖Cα+β
b,d

(T − t)
α+β
α −

1
αj
− 1
α (4.24)
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where in the last passage we applied the First Besov control (Lemma 7). From equations (4.22), (4.23) and
(4.24), it is possible to conclude that

∣∣Dx1 P̃
ξ
t,T g(x)−Dx1 P̃

ξ
t,T g(x′)

∣∣ ≤ C‖g‖Cα+β
b,d
|(x− x′)1|

n∑
j=1

(T − t)j−1(T − t)
α+β
α −

1
αj
− 1
α

≤ C‖g‖Cα+β
b,d
|(x− x′)1|(T − t)

α+β−2
α ≤ Cc

α+β−2
α

0 ‖g‖Cα+β
b,d

dα+β−1(x,x′)

where in the last passage we used that |(x− x′)1| = d(x,x′) and, since α+β−2
α < 0, that

|(x− x′)1|(T − t)
α+β−2
α ≤ c

α+β−2
α

0 dα+β−1(x,x′).

Remembering that c0 is considered fixed and bigger then zero, the searched control follows immediately.

Controls on frozen Green kernel. In order to preserve the previous terminology of off-diagonal/diagonal
regime for the frozen semigroup, we have introduced the transition time t0, defined in (4.16). Then, while
integrating in s from t to T , we will say that the "local" off-diagonal regime holds for G̃τ,ξ if s is in [t, t0] and
that the "local" diagonal regime holds if s is in [t0, T ]. With the notations of (4.2), it seems quite natural
now to decompose the derivative of the frozen Green kernel with respect to t0, i.e.

Dx1G̃
τ,ξ
t,T f(t,x) = Dx1G̃

τ,ξ
t,t0f(t,x) +Dx1G̃

τ,ξ
t0,T

f(t,x).

We remark however that the globally off-diagonal regime is considered in the above decomposition, too.
Indeed, when T − t ≤ c0dα(x,x′), t0 coincides with T and the second term on the right-hand side vanishes.
We start considering the off-diagonal regime represented by

∣∣Dx1G̃
τ,ξ
t,t0f(t,x)−Dx1G̃

τ,ξ
t,t0f(t,x′)

∣∣.
It holds that∣∣Dx1G̃

τ,ξ
t,t0f(t,x)−Dx1G̃

τ,ξ
t,t0f(t,x′)

∣∣ ≤ ∫ t0

t

[∣∣Dx1 P̃
τ,ξ
t,s f(s,x)

∣∣+
∣∣Dx1 P̃

τ,ξ
t,s f(s,x′)

∣∣] ds
We then use the control on the frozen semigroup (Equation (3.7)) to find that∣∣Dx1G̃

τ,ξ
t,t0f(t,x)−Dx1G̃

τ,ξ
t,t0f(t,x′)

∣∣ ≤ C‖f‖L∞(Cβ
b,d

)

∫ t0

t

(s− t)
β−1
α ds ≤ C‖f‖L∞(Cβ

b,d
)(t0 − t)

β+α−1
α .

Our choice of t0 (cf. Equation (4.16)) allows then to conclude that∣∣Dx1G̃
τ,ξ
t,t0f(t,x)−Dx1G̃

τ,ξ
t,t0f(t,x′)

∣∣ ≤ C‖f‖L∞(Cβ
b,d

)d
β+α−1(x,x′)

remembering that, by assumption, c0 ≤ 1.
We can focus now on the diagonal regime represented by

∣∣Dx1G̃
τ,ξ
t0,T

f(t,x)−Dx1G̃
τ,ξ̃
t0,T

f(t,x′)
∣∣.

We start applying a Taylor expansion on the derivative of the semigroup P̃ τ,ξf(t,x) so that

∣∣Dx1G̃
τ,ξ
t0,T

f(t,x)−Dx1G̃
τ,ξ
t0,T

f(t,x′)
∣∣ =

∣∣∣∫ T

t0

[
Dx1 P̃

τ,ξ
t,s f(s,x)−Dx1 P̃

τ,ξ
t,s f(s,x′)

]
ds
∣∣∣

=
∣∣∣∫ T

t0

∫ 1

0
D2
x1
P̃ τ,ξt,s f(s,x+ λ(x′ − x))(x′ − x)1 dλds

∣∣∣.
Then, the Fubini theorem and the control on the frozen semigroup (Equation (3.7)) allow us to write that

∣∣Dx1G̃
τ,ξ
t0,T

f(t,x)−Dx1G̃
τ,ξ
t0,T

f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)|(x− x

′)1|
∫ T

t0

(s− t)
β−2
α ds

≤ C‖f‖L∞(Cβ
b,d

)|(x− x
′)1|
[
(s− t)

α+β−2
α

]T
t0
.

Since by hypothesis (P) in assumption (A), it holds that α+ β − 2 < 0, it follows that∣∣Dx1G̃
τ,ξ
t0,T

f(t,x)−Dx1G̃
τ,ξ
t0,T

f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)|(x− x

′)1|(t0 − t)
α+β−2
α .

Using that |(x− x′)1| = d(x,x′) and remembering our choice of t0 in (4.16), we can then conclude that∣∣Dx1G̃
τ,ξ
t0,T

f(t,x)−Dx1G̃
τ,ξ
t0,T

f(t,x′)
∣∣ ≤ Cc

α+β−2
α

0 ‖f‖L∞(Cβ
b,d

)d
α+β−1(x,x′).
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Proof of Lemma 10 Controls on frozen semigroup. Using the change of variables z = m̃τ,ξ
t,T (x)− y, we

can rewrite P̃ τ,ξt,T g(x) as

P̃ τ,ξt,T g(x) =
∫
Rnd

p̃τ,ξ(t, T,x,y)g(y) dy =
∫
Rnd

1
det
(
MT−t

)pS(T − t,M−1
T−t
(
m̃τ,ξ
t,T (x)− y

)
g(y) dy

=
∫
Rnd

1
det
(
MT−t

)pS(T − t,M−1
T−tz

)
g(m̃τ,ξ

t,T (x)− z) dz.

It then follows that∣∣P̃ τ,ξt,T g(x)− P̃ τ,ξt,T g(x′)
∣∣ =

∣∣∣∫
Rnd

1
det
(
MT−t

)pS(T − t,M−1
T−tz

)[
g(m̃τ,ξ

t,T (x)− z)− g(m̃τ,ξ
t,T (x′)− z)

]
dz
∣∣∣.

We observe now that the function x→ m̃τ,ξ
t,T (x) is affine (cf. Equation (3.4)) and thus, that(

m̃τ,ξ
t,T (x)− z

)
1 =

(
m̃τ,ξ
t,T (x′)− z

)
1

since x1 = x′1. It then holds that∣∣g(m̃τ,ξ
t,T (x)− z)− g(m̃τ,ξ

t,T (x′)− z)
∣∣ ≤ C‖g‖Cα+β

b,d
dα+β(m̃τ,ξ

t,T (x), m̃τ,ξ
t,T (x′)

)
≤ C‖g‖Cα+β

b,d
dα+β(x,x′).

Hence, we can conclude using it to write

∣∣P̃ τ,ξt,T g(x)− P̃ τ,ξt,T g(x′)
∣∣ ≤ C‖g‖Cα+β

b,d
dα+β(x,x′)

∫
Rnd

1
det
(
MT−t

)pS(T − t,M−1
T−tz

)
dz

≤ C‖g‖Cα+β
b,d

dα+β(x,x′).

Controls on frozen Green kernel. We will assume the same notations appeared in the previous lemma for the
frozen Green Kernel. In particular, we decompose the frozen Green Kernel as

G̃τ,ξt,T f(t,x) = G̃τ,ξt,t0f(t,x) + G̃τ,ξt0,T f(t,x)

with t0 defined in (4.16).
We start rewriting the off-diagonal regime contribution as∣∣G̃τ,ξt,t0f(t,x)− G̃τ,ξt,t0f(t,x′)

∣∣
=
∣∣∣∫ t0

t

∫
Rnd

p̃τ,ξ(t, s,x,y)
[
f(s,y)± f(s, m̃ξ

t,s(x))
]
− p̃τ,ξ(t, s,x′,y)

[
f(s,y)± f(s, m̃τ,ξ

t,s (x′))
]
dyds

∣∣∣
≤
∣∣∣∫ t0

t

∫
Rnd

p̃τ,ξ(t, s,x,y)
[
f(s,y)− f(s, m̃τ,ξ

t,s (x))
]
dyds− p̃τ,ξ(t, s,x′,y)

[
f(s,y)− f(s, m̃τ,ξ

t,s (x′))
]
dyds

∣∣∣
+
∣∣∣∫ t0

t

f(s, m̃τ,ξ
t,s (x))− f(s, m̃τ,ξ

t,s (x′)) ds
∣∣∣.

We can then use the smoothing effect for p̃τ,ξ (Equation (3.6) in Lemma 3) to show that

∣∣G̃τ,ξt,t0f(t,x)− G̃τ,ξt,t0f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)

∫ t0

t

[
(s− t)β/α + dβ(m̃τ,ξ

t,s (x), m̃τ,ξ
t,s (x′))

]
ds. (4.25)

Recalling from Equation (3.4) that x→ m̃τ,ξ
t,s (x) is affine, it follows that

∣∣G̃τ,ξt,t0f(t,x)− G̃τ,ξt,t0f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)

∫ t0

t

[
(s− t)β/α + dβ(x,x′)

]
ds

≤ C‖f‖L∞(Cβ
b,d

)
[
(t0 − t)dβ(x,x′) + (t0 − t)

β+α
α

]
.
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Using that t0 − t ≤ c0dα(x,x′) for some c0 ≤ 1, we can finally conclude that∣∣G̃τ,ξt,t0f(t,x)− G̃τ,ξt,t0f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)d
β+α(x,x′).

Now, we can focus our analysis to the diagonal regime contribution, i.e.
∣∣G̃τ,ξt0,T f(t,x)− G̃τ,ξt0,T f(t,x′)

∣∣.
We start applying a Taylor expansion on the frozen semigroup P̃ τ,ξt,s f with respect to the i-th variable xi,
which is, by hypothesis, the only one for which the entries of x and x′ differ. Namely,

∣∣G̃τ,ξt0,T f(t,x)− G̃τ,ξt0,T f(t,x′)
∣∣ =

∣∣∫ T

t0

P̃ τ,ξt,s f(s,x)− P̃ τ,ξt,s f(s,x′) ds
∣∣

=
∣∣∫ T

t0

∫ 1

0
Dxi P̃

τ,ξ
t,s f(s,x+ λ(x′ − x)) · (x′ − x)i dλds

∣∣.
The control on the frozen semigroup (Equation (3.7)) then implies that

∣∣G̃τ,ξt0,T f(t,x)− G̃τ,ξt0,T f(t,x′)
∣∣ ≤ C‖f‖L∞(Cβ

b,d
)|(x− x

′)i|
∫ T

t0

(s− t)
β
α−

1
αi ds. (4.26)

Noticing from assumption (P) that β + α− 1− α(i− 1) < 0 for i ≥ 2, it holds that∫ T

t0

(s− t)
β
α−

1
αi ds =

∫ T

t0

(s− t)
β−[1+α(i−1)]

α ds ≤ C
[
−(s− t)

β+α−1−α(i−1)
α

]T
t0
≤ C(t0 − t)

β−1−α(i−2)
α .

Using that |(x− x′)i| = d1+α(i−1)(x,x′) and our choice of t0 (cf. Equation (4.16)), we can then conclude
from (4.26) that∣∣G̃τ,ξt0,T f(t,x)− G̃τ,ξt0,T f(t,x′)

∣∣ ≤ Cc
β−1−α(i−2)

α
0 ‖f‖L∞(Cβ

b,d
)d
α+β(x,x′) ≤ Cc

β−γi
α

0 ‖f‖L∞(Cβ
b,d

)d
α+β(x,x′),

remembering the definition of γi in (2.14).

5 A Priori Estimates
Since the aim of this section is to prove Proposition 4, we will assume tacitly from this point further
that assumption (A’) holds. Moreover, we recall here that we are throughout this section considering the
regularized framework of Section 3.2.

WARNING: For notational simplicity, we drop here the sub-scripts and the superscripts in m associated
with the regularization. For any fixed (τ, ξ) in [0, T ]× Rnd, we rewrite, with some abuse in notations, the
Duhamel expansion (Equation (3.16)) as:

u(t,x) = ũτ,ξ(t,x) +
∫ T

t

P̃ τ,ξt,s R
τ,ξ(s,x) ds, (5.27)

where ũτ,ξ is defined through the Duhamel representation (3.10) and

Rτ,ξ(t,x) =
〈
F (t,x)− F (t,θτ,t(ξ)), Dxu(t,x)

〉
, (t,x) ∈ (0, T )× Rnd.

It is however important to keep in mind that f , g, F are now smooth and bounded functions so that all the
terms above are clearly defined. We recall however that we aim at obtaining controls in the L∞(Cα+β

b,d )-norm,
uniformly with respect to the regularization parameter.
From the expansion above, we know moreover that for any (t, ξ) in [0, T ]× Rnd, it holds that

Dx1u(t,x) = Dx1 ũ
τ,ξ(t,x) +

∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds. (5.28)

As seen in the previous section, these decompositions will allow us to control u in norm L∞(0, T ;Cα+β
b,d (Rnd))

analyzing separately the contributions from the Duhamel representation ũτ,ξ and those from the expansion
error Rτ,ξ(t,x) for suitable choices of freezing parameters (τ, ξ).
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5.1 Second Besov Control
This sub-section focuses on the contribution associated with the remainder term Rm,τ,ξ appearing in the
Duhamel-type expansion (5.27). We recall that we aim at controlling it with the L∞(Cα+β

b,d )-norm of the
coefficients, uniformly in the regularization parameter. Let us start decomposing it through∣∣∣∫ T

t

P̃ τ,ξt,s R
τ,ξ(s,x) ds

∣∣∣ =
∣∣∣ n∑
j=1

∫ T

t

∫
Rnd

p̃τ,ξ(t, s,x,y)
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]
·Dyju(s,y) dyds

∣∣∣.
We then notice that the non-degenerate contribution in the sum (corresponding to the index j = 1) can
be treated easily remembering that u is differentiable with respect to the first component with a bounded
derivative. Indeed, using the smoothing effect for the frozen density p̃τ,ξ (Equation (3.6)), it holds that

∣∣∣∫ T

t

∫
Rnd

p̃τ,ξ(t, s,x,y)
[
F1(s,y)− F1(s,θτ,s(ξ))

]
·Dy1u(s,y) dyds

∣∣∣
≤ C‖Dy1u(s,y)‖l∞(L∞)‖F ‖H

∫ T

t

∫
Rnd

p̃τ,ξ(t, s,x,y)dα+β(y,θτ,s(ξ)
)
dyds

≤ C‖Dy1u(s,y)‖l∞(L∞)‖F ‖H
∫ T

t

(s− t)
β
α ds ≤ C‖Dy1u(s,y)‖l∞(L∞)‖F ‖H(T − t)

α+β
α .

In order to deal with the degenerate indexes, we will use, similarly to the previous subsection, a reasoning in
Besov spaces. Since u is not differentiable with respect to yj if j > 1, we move the derivative to the other
terms using integration by parts formula:∣∣∣∫ T

t

∫
Rnd

Dyj ·
{
p̃τ,ξ(t, s,x,y)

[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
u(s,y) dyds

∣∣∣.
In order to rely again on the duality in Besov spaces (4.11), we rewrite the above expression as

∣∣∣∫ T

t

∫
Rnd

Dyj ·
{
p̃τ,ξ(t, s,x,y)

[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
u(s,y) dyds

∣∣∣≤∫ T

t

∫
R(n−1)d

∥∥∥Dyj ·{p̃τ,ξ(t, s,x,yrj , ·)[Fj(s,yrj , ·)−Fj(s,θτ,s(ξ))
]}∥∥∥

B
−(αj+βj)
1,1

‖u(s,yrj , ·)‖
B
αj+βj
∞,∞

dyrjds.

Remembering identification (4.10), it holds now that

∣∣∣∫ T

t

∫
Rnd

Dyj ·
{
p̃τ,ξ(t, s,x,y)

[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
u(s,y) dyds

∣∣∣
≤ ‖u‖L∞(Cα+β

b,d
)

∫ T

t

∫
R(n−1)d

∥∥∥Dyj · {p̃τ,ξ(t, s,x,yrj , ·)[Fj(s,yrj , ·)− Fj(s,θτ,s(ξ))
]}∥∥∥

B
−(αj+βj)
1,1

dyrjds.

It then remains to control the integral of the Besov norm above. To do that, we will need a refinement
of the smoothing effect (3.6) that involves only partial differences of variables. For a fixed i in J2, nK, we
start denoting by di:n(·, ·) the part of the anisotropic distance considering only the last n− (i− 1) variables.
Namely,

di:n(x,x′) :=
n∑
j=i
|(x− x′)j |

1
1+α(j−1) .

Lemma 11 (Partial Smoothing Effect). Let i be in J2, nK, γ in (0, 1 ∧ α(1 + α(i − 1))) and ϑ, % two
n-multi-indexes such that |ϑ+ %| ≤ 3. Then, there exists a constant C := C(ϑ, %, γ) such that for any t < s
in [0, T ], any x in Rnd,∫

Rnd
|D%
yD

ϑ
xp̃

τ,ξ(t, s,x,y)|dγi:n
(
y,θτ,s(ξ)

)
dy ≤ C(s− t)

γ
α−
∑n

i=k
ϑk+%k
αk (5.29)

taking (τ, ξ) = (t, x).
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The above assumption on γ should not appear to much strange. Indeed, in the partial distance dγi:n(x,x′),
the stronger term to be integrated is at level i with intensity of order γ/(1 +α(i−1)). Since by the smoothing
effect (Equation (3.6)) of the frozen density, we know we can integrate against p̃τ,ξ contributions of order up
to α, so it appears the condition γ < α(1 + α(i− 1)).
A proof of this result can be obtained mimicking with slightly modifications the proof in Lemma 3.

As done above for the first Besov control, we will however state the result considering a possibly additional
derivative with respect to x1. Namely, we would like to control the following:

Dyj ·
{
Dϑ
xp̃

τ,ξ(t, s,x,yrj , ·)⊗
[
Fj(s,yrj , ·)− Fj(s,θτ,s(ξ))

]}
where we have denoted as in (4.7), Fj(s,yrj , ·) := Fj(s,y1, . . . ,yj−1, ·,yj+1, . . . ,yn) and, with a slightly
abuse of notation, by Dyj · an extended form of the divergence over the j-th variable. In other words, this
"enhanced" divergence form decreases by one the order of the input tensor.
Lemma 12 (Second Besov Control). Let j be in J2, nK and ϑ a multi-index in Nn such that |ϑ| ≤ 2. Under
(A’), there exists a constant C := C(j, ϑ) such that for any x in Rnd and any t < s in [0, T ]∫

R(n−1)d

∥∥∥Dyj · {Dϑ
xp̃

τ,ξ(t, s,x,yrj , ·)⊗
[
Fj(s,yrj , ·)− Fj(s,θτ,s(ξ))

]}∥∥∥
B
−(αj+βj)
1,1

dyrj

≤ C‖F ‖H(s− t)
β
α−
∑n

k=1
ϑk
αk

taking (τ, ξ) = (t,x).

Proof. To control the Besov norm in B−(αj+βj)
1,1 (Rd), we are going to use the stable thermic characterization

(4.8) with γ̃ = −(αj + βj). Since the first term can be controlled as in the First Besov Control (Lemma 7),
we will focus on the second one, i.e.∫ 1

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
∂vph(v, z − yj)Dyj ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)⊗
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
dyj

∣∣∣ dzdv.
We start applying integration by parts formula noticing that Dyjph(v, z − yj) = −Dzph(v, z − yj), to write
that ∫ 1

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)⊗
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
dyj

∣∣∣ dzdv.
Fixed a constant δj ≥ 1 to be chosen later, we then split the above integral with respect to v into two
components

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
dyj

∣∣∣ dzdv
+
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

∣∣∣∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
dyj

∣∣∣ dzdv
=:
(
I1 + I2

)
(yrj).

The second component I2 has no time-singularity and it can be easily controlled using Fubini theorem

I2(yrj) ≤

C‖F ‖H
∫ 1

(s−t)δj
v
αj+βj
α

∫
Rd

(∫
Rd
|Dz∂vph(v, z − yj)| dz

)
|Dϑ
xp̃

τ,ξ(t, s,x,y)|d1+α(j−2)+β
j:n (y,θτ,s(ξ)) dyjdv,

remembering that Fj(t, ·) depends only on the last (n − j) variables and it is in C
1+α(j−2)+β
b,d (Rnd) by

assumption (R). We can then use the smoothing effect of the heat-kernel ph (Equation (4.9)) and the Fubini
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theorem again to write that

I2(yrj) ≤ C‖F ‖H
∫ 1

(s−t)δj

v
αj+βj−1

α

v

∫
Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)|d1+α(j−2)+β
j:n (y,θτ,s(ξ)) dyjdv

≤ C‖F ‖H
(∫ 1

(s−t)δj

v
αj+βj−1

α

v
dv
)(∫

Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)|d1+α(j−2)+β
j:n (y,θτ,s(ξ)) dyj

)
.

Noticing from (2.20) that αj + βj − 1 < 0, it holds now that

I2(yrj) ≤ C‖F ‖H(s− t)δj
αj+βj−1

α

∫
Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)|d1+α(j−2)+β
j:n (y,θτ,s(ξ)) dyj .

We can finally add the integral with respect to the other components yrj . In order to use now the partial
smoothing effect (Equation (5.29)), we take τ = t and ξ = x and notice that by assumption (P),

1 +α(j− 2) +β = 1 +α(j− 1)− (α−β) < 1 +α(j− 1)− (1−α)
(
1 +α(j− 1)

)
= α(1 +α(j− 1)). (5.30)

It then holds that∫
R(n−1)d

I2(yrj) dyrj ≤ C‖F ‖H(s− t)δj
αj+βj−1

α

∫
Rnd
|Dϑ
xp̃

τ,ξ(t, s,x,y)|d1+α(j−2)+β
j:n (y,θτ,s(ξ)) dy

≤ C‖F ‖H(s− t)δj
αj+βj−1

α + 1+α(j−2)+β
α −

∑n

k=1
ϑk
αk . (5.31)

To control the other term I1, we focus at first on the inner integral with respect to yj :∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)⊗
[
Fj(s,y)− Fj(s,θτ,s(ξ))

]}
dyj .

We start using a cancellation argument with respect to the density ph to divide it in∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)⊗
[
Fj(s,y)− Fj(s,θτ,s(ξ))

}
−Dϑ

xp̃
τ,ξ(t, s,x,yrj , z)⊗

[
Fj(s,yrj , z)− Fj(s,θτ,s(ξ))

]}
dyj

=
∫
Rd
Dz∂vph(v, z − yj) ·

{
Dϑ
xp̃

τ,ξ(t, s,x,y)⊗
[
Fj(s,y)− Fj(s,yrj , z)

]}
dyj

+
∫
Rd
Dz∂vph(v, z− yj) ·

{[
Dϑ
xp̃

τ,ξ(t, s,x,y)−Dϑ
xp̃

τ,ξ(t, s,x,yrj , z)
]
⊗
[
Fj(s,yrj , z)−Fj(s,θτ,s(ξ))

]}
dyj

=:
(
J1 + J2

)
(v,yrj , z).

Remembering notation (4.7) for Fj(s,yrj , z) and that Fj is 1+α(j−2)+β
1+α(j−1) -Hölder continuous with respect to its

j-th variable by assumption (R), the first component J1 can be easily controlled using the Fubini theorem by∫
Rd

∣∣∣J1(v,yrj , z)
∣∣∣ dz

≤ C‖F ‖H
∫
Rd

(∫
Rd
|z − yj |

1+α(j−2)+β
1+α(j−1) |Dz∂vph(v, z − yj)| dz

)
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dyj

≤ C‖F ‖Hv
1
α

1+α(j−2)+β
1+α(j−1) −

1
α−1

∫
Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dyj

where in the last passage we used the smoothing effect of the heat-kernel ph (Equation (4.9)), noticing that

1 + α(j − 2) + β

1 + α(j − 1) = 1 + β − α
1 + α(j − 1) < 1 + α,
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since α > β by assumption (P). Using now the identity

αj + βj
α

+ 1
α

(1 + α(j − 2) + β

1 + α(j − 1) − 1
)

= 2βj
α
, (5.32)

we add the integral with respect to v and write that

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣J1(v,yrj , z)
∣∣∣ dzdv ≤ C‖F ‖H

∫ (s−t)δj

0

v
2βj
α

v

∫
Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dyjdv

≤ C‖F ‖H(s− t)δj
2βj
α

∫
Rd
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dyj .

Adding the integral with respect to the other components yrj , we can finally conclude that

∫
R(n−1)d

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd

∣∣∣J1(v,yrj , z)
∣∣∣ dzdv dyrj ≤ C‖F ‖H(s− t)δj

2βj
α

∫
Rnd
|Dϑ
xp̃

τ,ξ(t, s,x,y)| dy

≤ C‖F ‖H(s− t)δj
2βj
α −
∑n

k=1
ϑk
αk (5.33)

To control the second component J2, we start applying a Taylor expansion on p̃τ,ξ with respect to yj :

J2(v,yrj , z) =
∫
Rd
Dz∂vph(v, z − yj) ·

{[
Fj(s,yrj , z)− Fj(s,θτ,s(ξ))

]
⊗
∫ 1

0
DyjD

ϑ
xp̃

τ,ξ(t, s,x,yrj ,yj + λ(z − yj)) · (z)
}
dλdyj . (5.34)

We then notice that for any fixed λ in [0, 1], it holds that

|Fj(s,yrj , z)− Fj(s,θτ,s(ξ))| ≤ C‖F ‖H
{∣∣(z − θτ,s(ξ)

)
j

∣∣ 1+α(j−2)+β
1+α(j−1) +

n∑
k=j+1

∣∣(y − θτ,s(ξ)
)
k

∣∣ 1+α(j−2)+β
1+α(k−1)

}
≤ C‖F ‖H

{∣∣λ(yj−z)
∣∣ 1+α(j−2)+β

1+α(j−1) +
∣∣(yj +λ(z−yj)−θτ,s(ξ)

)
j

∣∣ 1+α(j−2)+β
1+α(j−1) +

n∑
k=j+1

∣∣(y−θτ,s(ξ)
)
k

∣∣ 1+α(j−2)+β
1+α(k−1)

}
≤ C‖F ‖H

{∣∣z − yj∣∣ 1+α(j−2)+β
1+α(j−1) + d

1+α(j−2)+β
j:n

(
(yrj ,yj + λ(z − yj))

)
,θτ,s(ξ)

)}
where as in (4.7), we denoted (yrj ,yj+λ(z−yj)) := (y1, . . . ,yj−1,y1, . . . ,yj−1,yj+λ(z−yj),yj+1, . . . ,yn).
We can thus split J2 as

|J2(v,yrj , z)| ≤

C‖F ‖H
∫ 1

0

{∫
Rd
|z − yj |

1+α(j−2)+β
1+α(j−1) +1|Dz∂vph(v, z − yj)| |DyjDϑ

xp̃
τ,ξ(t, s,x,yrj ,yj + λ(z − yj))| dyj

+
∫
Rd
|z − yj | |Dz∂vph(v, z − yj)| |DyjDϑ

xp̃
τ,ξ(t, s,x,yrj ,yj + λ(z − yj))|

× d1+α(j−2)+β
j:n ((yrj ,yj + λ(z − yj)),θτ,s(ξ))dyj

}
dλ =: C‖F ‖H

∫ 1

0

(
J2,1 + J2,2

)
(v,yrj , z, λ) dλ (5.35)

Adding now the integral with respect to z, the first term J2,1 can be rewritten as∫
Rd
J2,1(v,yrj , z, λ) dz ≤∫

Rd

∫
Rd
|z − yj |

1+α(j−2)+β
1+α(j−1) +1|Dz∂vph(v, z − yj)| |DyjDϑ

xp̃
τ,ξ(t, s,x,yrj ,yj + λ(z − yj))| dyjdz.
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The Fubini theorem and the change of variables z̃ = z − yj and ỹj = yj + λz̃ allow then to divide the
integrals:∫

Rd
J2,1(v,yrj , z, λ) dz ≤

(∫
Rd
|z̃|

1+α(j−2)+β
1+α(j−1) +1|Dz̃∂vph(v, z̃)| dz̃

)(∫
Rd
|DỹjDϑ

xp̃
τ,ξ(t, s,x,yrj , ỹj)| dỹj

)
Noticing now from assumption (P) that

1 + α(j − 2) + β

1 + α(j − 1) + 1 = 1− β − α
1 + α(j − 1) + 1 < 2− (1− α) = 1 + α,

we can use the smoothing effect of the heat-kernel ph (Equation (4.9)) to show that∫
Rd
J2,1(v,yrj , z, λ) dz ≤ v

1+α(j−2)+β
α(1+α(j−1))

v

∫
Rd
|DỹjDϑ

xp̃
τ,ξ(t, s,x,yrj , ỹj)| dỹj .

Remembering equation (5.32), we can add the in integral with respect to v and show that∫ (s−t)δj

0
v
αj+βj
α

∫
Rd
J2,1(v,yrj , z, λ) dz dv ≤ (s− t)δj

2βj+1
α

∫
Rd
|DỹjDϑ

xp̃
τ,ξ(t, s,x,yrj , ỹj)| dỹj .

Adding the integral with respect to yrj , we can conclude with J2,1 that

∫
R(n−1)d

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd
J2,1(v,yrj , z, λ) dz dv dyrj

≤ C(s− t)δj
2βj+1
α

∫
Rnd
|DyjDϑ

xp̃
τ,ξ(t, s,x,y)| dy ≤ C(s− t)δj

2βj+1
α − 1

αj
−
∑n

k=1
ϑk
αk (5.36)

where, for simplicity, we have changed back the variable ỹj with yj .
To control instead the term J2,2 (cf. Equation (5.35)), we can use again the Fubini theorem and the changes
of variables z̃ = z − yj , ỹj = yj + λz̃ to divide the integrals and show that∫

Rd
J2,2(v,yrj , z, λ) dz

≤
(∫

Rd
|z̃| |Dz̃∂vph(v, z̃)| dz̃

)(∫
Rd
|DỹjDϑ

xp̃
τ,ξ(t, s,x,yrj , ỹj)|d1+α(j−2)+β

j:n ((yrj , ỹj),θτ,s(ξ))dỹj
)

≤ 1
v

∫
Rd
|DyjDϑ

xp̃
τ,ξ(t, s,x,y)|d1+α(j−2)+β

j:n (y,θτ,s(ξ))dyjdv

where in the second inequality we used the smoothing effect of the heat-kernel ph (Equation (4.9)) and
changed back the variable ỹj with yj for simplicity. It then follows that

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd
J2,2(v, z,yrj) dzdv

≤ (s− t)δj
αj+βj
α

∫
Rd
|DyjDϑ

xp̃
τ,ξ(t, s,x,y)|d1+α(j−2)+β

j:n (y,θτ,s(ξ))dyj .

Taking now τ = t and ξ = x, we conclude with J2,2 applying the partial smoothing effect (5.29) of p̃τ,ξ under
the hypothesis 1 + α(j − 2) + β ≤ α(1 + α(j − 1)) (see Equation (5.30)) to write that

∫
R(n−1)d

∫ (s−t)δj

0
v
αj+βj
α

∫
Rd
J2,2(v, z,yrj) dz dvdyrj

≤ (s− t)δj
αj+βj
α

∫
Rnd
|DyjDϑ

xp̃
τ,ξ(t, s,x,y)|d1+α(j−2)+β

j:n (y,θτ,s(ξ))dy

≤ C(s− t)δj
αj+βj
α + 1+α(j−2)+β

α − 1
αj
−
∑n

k=1
ϑk
αk . (5.37)
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Looking back to Equations (5.31), (5.33), (5.36) and (5.37), we can finally choose the right δj . Since
s− t ≤ T − t < 1 by hypothesis (ST), it is enough to take δj such that the following quantities

δj
αj + βj − 1

α
+ 1 + α(j − 2) + β

α
, δj

2βj
α
, δj

2βj + 1
α

− 1
αj

and δj
αj + βj

α
+ 1 + α(j − 2) + β

α
− 1
αj

are bigger than β/α. This is true if for example we choose

δj = [1 + α(j − 2)][1 + α(j − 1)]
1 + α(j − 2)− β .

5.2 Proof of Proposition 4
We have now all the tools necessary to prove the A Priori estimates (Proposition 4). In Lemma 13 below, we
will state the estimates for the supremum norms of the solution and its non-degenerate gradient while the
controls of the Hölder moduli of the solution and its gradient with respect to the non-degenerate variable are
given in Lemmas 17 and 18, respectively.
The Schauder estimates (Theorem 1) for a solution u in L∞(0, T ;Cα+β

b,d (Rnd)) of equation (1.1) will then
follows immediately.
Lemma 13 (Supremum Estimates). Let u be as in Equation (5.27). Then, there exists a constant C ≥ 1
such that for any t in [0, T ] and any x in Rnd,

|u(t,x)|+ |Dx1u(t,x)| ≤ C
[
‖g‖Cα+β

b,d
+ ‖f‖L∞(Cβ

b,d
) + ‖F ‖H‖u‖L∞(Cα+β

b,d
)

]
.

Proof. As indicated above, we can control the supremum norm of u and its gradient with respect to x1
analyzing separately the contributions from the proxy ũτ,ξ, that have already been handled in Lemma 8, and
those from the perturbative term Rτ,ξ(s,x). To control the contribution

∫ T
t
Dx1 P̃

τ,ξ
t,s R

τ,ξ(s,x) ds, we start
splitting it up in the following way∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds =
n∑
j=1

∫ T

t

∫
Rnd

Dx1 p̃
τ,ξ(t, s,x,y)

[
Fj(s,y)− Fj(s,θτ,s(ξ))

]
·Dyju(s,y) dyds

=:
n∑
j=1

Ij(t,x). (5.38)

Since by hypothesis u has a proper derivative with respect to the first variable x1, it is possible to bound I1
through

|I1(t,x)| ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)

∫ T

t

∫
Rnd

∣∣Dx1 p̃
τ,ξ(t, s,x,y)

∣∣dβ(y,θτ,s(ξ)) dyds.

We take now (τ, ξ) = (t,x) so that θτ,s(ξ) = m̃τ,ξ
t,s (cf. Equation (3.5) in Lemma 2) and we then use the

smoothing effect for the frozen density p̃τ,ξ (Equation (3.6)) to show that

|I1(t,x)| ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)(T − t)
β+α−1
α . (5.39)

Hence, it holds that |I1(t,x)| ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

), since T ≤ 1 and α+ β > 1 by assumptions (ST) and
(P).
The control for the terms Ij with j > 1 can be obtained easily from the second Besov control (Lemma 12).
For this reason, we start applying integration by parts formula to show that

|Ij(t,x)| =
∣∣∣∫ T

t

∫
Rnd

Dyj ·
{
Dx1 p̃

τ,ξ(t, s,x,y)
[
Fj(s,y)− Fj(s,θt,s(ξ))

]}
u(s,y) dyds

∣∣∣
We can then use identification (4.10) and duality in Besov spaces (4.11) to write that

|Ij(t,x)|

≤ ‖u‖L∞(Cα+β
b,d

)

∫
R(n−1)d

∥∥∥Dyj · {Dx1 p̃
τ,ξ(t, s,x,yrj , ·)

[
Fj(s,yrj , ·)− Fj(s,θτ,s(ξ))

]}∥∥∥
B
−(αj+βj)
1,1

dyrj .
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Taking now (τ, ξ) = (t,x), the second Besov control (Lemma 12) can be applied to show that

|Ij(t,x)| ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)

∫ T

t

(s− t)
β−1
α ds ≤ C‖F ‖H‖u‖L∞(Cα+β

b,d
)(T − t)

β+α−1
α . (5.40)

Since by assumption (ST) T ≤ 1, we can conclude that |Ij(t,x)| ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

).
The control on the pertubative term ∫ T

t

P̃ τ,ξt,s R
τ,ξ(s,x) ds

can be obtained in a similar way. Namely, the inequalities (5.39) and (5.40) hold again with (T − t) β+α−1
α

replaced by (T − t) β+α
α .

As already specified in the previous sub-section, there is a big difference between the non-degenerate case
i = 1 where α+β is in (1, 2) and we have to deal with a proper derivative and the other degenerate situations
(i > 1) where instead (α+ β)/(1 + α(i− 1)) < 1 and the norm is calculated directly on the function. Again,
we are going to analyze the two cases separately. Lemma 9 will work on the non-degenerate setting (i = 1)
while lemma 10 will concerns the degenerate one (i > 1).

Moreover, we will need to divide the proofs in two cases, depending on which regime we are considering.
Since the global off-diagonal regime, i.e. when T − t ≤ c0dα(x,x′), will work essentially as the already shown
Schauder estimates (Proposition 1) for the proxy, the proof will be quite shorter.
Instead, in the global diagonal case, such that T − t ≥ c0d

α(x,x′), when a time integration is involved
(for example in the control of the frozen Green kernel or the perturbative term), two different situations
appear. There are again a local off-diagonal regime if s− t ≤ c0dα(x,x′) and a local diagonal regime when
s− t ≥ c0dα(x,x′). In order to handle these terms properly, the key tool is to be able to change the freezing
points depending on which regime we are. It seems reasonable that, when the spatial points are in a local
diagonal regime, the auxiliary frozen densities are considered for the same freezing parameter and conversely
that in the local off-diagonal regime, the densities are frozen along their own spatial argument. For this
reason, we have postponed the relative proofs in two specific sub-sections.

Before presenting the main results of this section, we are going to state three auxiliary estimates associated
with our proxy we will need below. We refer to the Section A.2 for a precise proof of these results.
The first one concerns the sensitivity of the Hölder flow θt,s with respect to the initial point. Indeed,
Lemma 14 (Controls on the Flows). Let t < s be two points in [0, T ] and x,x′ two points in Rnd. Then,
there exists a constant C ≥ 1 such that

d(θt,s(x),θt,s(x′)) ≤ C‖F ‖H
[
d(x,x′) + (s− t)1/α].

The second result is the following:
Lemma 15. Let t < s be two points in [0, T ] and x,x′ two points in Rnd and y,y′ two points in Rnd such
that y1 = y′1. Then, there exists a constant C ≥ 1 such that∣∣(m̃t,x

t,s (y)− m̃t,x′

t,s (y′))1
∣∣ ≤ C‖F ‖H

[
(s− t)dβ(x,x′) + (s− t)

α+β
α

]
.

Finally, the impact of the freezing point in the linearization procedure is the argument of this last Lemma.
Namely,
Lemma 16. Let t be in [0, T ] and x,x′ two points in Rnd. Then, there exists a constant C ≥ 1 such that

d(m̃t,x
t,t0(x′), m̃t,x′

t,t0 (x′)) ≤ Cc
1

1+α(n−1)
0 ‖F ‖Hd(x,x′)

where t0 is the change of regime time defined in (4.16).

Thanks to the above controls, we will eventually prove the following results:
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Lemma 17 (Controls on Hölder Moduli: Non-Degenerate). Let x,x′ be in Rnd such that xj = x′j for any
j 6= 1 and u as in Equation (5.27). Then, there exists a constant C ≥ 1 such that for any t in [0, T ],∣∣Dx1u(t,x)−Dx1u(t,x′)|

≤ C
{
c
α+β−2
α

0
(
‖g‖Cα+β + ‖f‖L∞(Cβ)

)
+
(
c

α+β−1
1+α(n−1)
0 + c

α+β−2
α

0 ‖F ‖H
)
‖u‖L∞(Cα+β

b,d
)

}
dα+β−1(x,x′).

We can point out now the analogous result in the degenerate setting.
Lemma 18 (Controls on Hölder Moduli: Degenerate). Let i be in J1, nK and x,x′ in Rnd such that xj = x′j
for any j 6= i and u as in Equation (5.27). Then, there exists a constant C ≥ 1 such that for any t in [0, T ],

∣∣u(t,x)−u(t,x′)| ≤ C
{
c
β−γi
α

0
(
‖g‖Cα+β + ‖f‖L∞(Cβ)

)
+
(
c

α+β
1+α(n−1)
0 + c

β−γi
α

0 ‖F ‖H
)
‖u‖L∞(Cα+β

b,d
)

}
dα+β(x,x′).

5.2.1 Off-Diagonal Regime

We focus here on the proof of the Controls on the Hölder Moduli either in the non-degenerate setting
(Proposition 17) and in the degenerate one (Proposition 18), when a off-diagonal regime is assumed. For this
reason, all the statements presented in this sub-section will tacitly assume that T − t ≤ c0dα(x,x′) for some
given (t,x,x′) in [0, T ]× R2nd.
To show these two controls, we will need to adapt the auxiliary estimates above to the off-diagonal regime
case we consider here. Namely,

d(m̃t,x
t,T (x), m̃t,x′

t,T (x′)) = d(θt,T (x),θt,T (x′)) ≤ C‖F ‖Hd(x,x′); (5.41)

if x1 = x′1,
∣∣(m̃t,x

t,T (x)− m̃t,x′

t,T (x′)
)

1

∣∣ ≤ C‖F ‖Hdα+β(x,x′) (5.42)

They can be obtained easily from Equation (3.5) in Lemma 2 and the sensitivity controls (Lemmas 14 and
15, respectively), taking s = T and (y,y′) = (x,x′).

Proof of Proposition 17 in the Off-Diagonal Regime. From the Duhamel-type expansion (5.28), we
can represent a mild solution u of Equation for any fixed (τ, ξ), (τ ′, ξ′) in [0, T ]× Rnd as

|Dx1u(t,x)−Dx1u(t,x′)| ≤
∣∣Dx1 P̃

τ,ξ
t,T g(x)−Dx1 P̃

τ ′,ξ′

t,T g(x′)
∣∣+
∣∣Dx1G̃

τ,ξ
t,T f(t,x)−Dx1G̃

τ ′,ξ′

t,T f(t,x′)
∣∣

+
∣∣∣∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x)−Dx1 P̃
τ ′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

∣∣∣.
After possible differentiations, we will choose τ = τ ′ = t, ξ = x and ξ′ = x′ in order to exploit the sensitivity
controls (5.42) and (5.41).

Control on the frozen semigroup. It can be handled following the analogous part in the proof of the Hölder
control for the proxy (Lemma 9). The only difference is that we cannot control

d(m̃τ,ξ
t,T (x), m̃τ ′,ξ′

t,T (x′))

in Equation (4.18) using the affinity of the mapping x → m̃τ,ξ
t,T (x), since the two freezing point are now

different. Instead, we can take τ = τ ′ = t, ξ = x and ξ′ = x′ and apply the sensitivity control (5.41) to write
that

d(m̃τ,ξ
t,T (x), m̃τ ′,ξ′

t,T (x′)) = d(θt,T (x),θt,T (x′)) ≤ C‖F ‖Hd(x,x′).

Control on the Green kernel. It follows immediately from the proof of the Hölder control (Lemma 9) for the
proxy, noticing that t0 = T , since we are in the off-diagonal regime.

Control on the perturbative error. Since we do not exploit the difference of the spatial points (x,x′) in the
off-diagonal regime but instead we control the two contributions separately, we can rely on the controls on
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the supremum norms we have already shown in Lemma 13. Namely, we start writing that

∣∣∣∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x)−Dx1 P̃
τ ′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

∣∣∣
≤
∣∣∣∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds
∣∣∣+
∣∣∣∫ T

t

Dx1 P̃
τ ′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

∣∣∣ (5.43)

Then, we can follow the same reasonings of Lemma 13 concerning the remainder term (cf. Equations (5.38),
(5.39) and (5.40)) to show that∣∣∣∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds
∣∣∣ ≤ C‖F ‖H‖u‖L∞(Cα+β

b,d
)(T − t)

α+β−1
α . (5.44)

Using it in the above Equation (5.43), we can finally conclude that∣∣∣∫ T

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x)−Dx1 P̃
τ ′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

∣∣∣ ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)d
α+β−1(x,x′) (5.45)

remembering that we assumed to be in the off-diagonal regime, i.e. T − t ≤ c0dα(x,x′) for some c0 ≤ 1.

Proof of Proposition 18 in the Off-Diagonal Regime. As done before, we are going to analyze
separately the single terms appearing from the Duhamel-type representation (5.27) of a solution u:

|u(t,x)− u(t,x′)| ≤
∣∣P̃ τ,ξt,T g(x)− P̃ τ

′,ξ′

t,T g(x′)
∣∣+
∣∣G̃τ,ξt,T f(t,x)− G̃τ

′,ξ′

t,T f(t,x′)
∣∣

+
∣∣∣∫ T

t

P̃ τ,ξt,s R
τ,ξ(s,x)− P̃ τ

′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

∣∣∣
for some (τ, ξ), (τ ′, ξ′) in [0, T ]× Rnd fixed but to be chosen later as τ = τ ′ = t, ξ = x and ξ′ = x′.

Control on the frozen semigroup. We can essentially follow the proof of the Hölder control (Lemma 10) for
the proxy. However, this time we cannot exploit the affinity of the mapping x → m̃τ,ξ

t,T (x) to control the
difference ∣∣g(m̃τ,ξ

t,T (x)− z)− g(m̃τ,ξ
t,T (x′)− z)

∣∣.
Instead, we notice now that we can bound it as∣∣g(m̃τ,ξ

t,T (x)− z)− g(m̃τ,ξ
t,T (x′)− z)

∣∣ ≤ C‖g‖Cα+β
b,d

[
dα+β(m̃τ,ξ

t,T (x), m̃τ,ξ
t,T (x′)

)
+
∣∣(m̃τ,ξ

t,T (x)− m̃τ,ξ
t,T (x′)

)
1

∣∣]
since g is differentiable and thus Lipschitz continuous, in the first non-degenerate variable.
Taking now τ = τ ′ = t, ξ = x and ξ′ = x′, we can use the sensitivity controls (5.41) and (5.42) (noticing
that by assumption, x1 = x′1) to write that∣∣g(m̃τ,ξ

t,T (x)− z)− g(m̃τ,ξ
t,T (x′)− z)

∣∣ ≤ C‖F‖H‖g‖Cα+β
b,d

dα+β(x,x′)

Control on the Green kernel. It can be obtained following the analogous part in the proof of the Hölder
control (Lemma 10) for the proxy. Similarly to the paragraph "Control on the frozen semigroup" in the
previous proof, we need to take (τ, ξ) = (t,x), (τ, ξ′) = (t,x) and apply the sensitivity control (5.41) to
control the term

d(m̃τ,ξ
t,T (x), m̃τ ′,ξ′

t,T (x′))

appearing in Equation (4.25).

Control on the perturbative error. The proof of this estimate essentially matches the previous, analogous
one in the non-degenerate setting. Namely, Equations (5.43), (5.44) and (5.45) hold again with (T − t) β+α

α

instead of (T − t) β+α−1
α .
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5.2.2 Diagonal Regime

Since the aim of this section is to prove Lemmas 17 and 18 when a diagonal regime is assumed, we will
assume from this point further that T − t ≥ c0dα(x,x′) for some given (t,x,x′) in [0, T ]× R2nd.
As preannounced in the introduction of this section, we need here a modification of the Duhamel-type repre-
sentation (3.16) that allows to change the freezing points along the time integration variable. Remembering
the previous notations for G̃τ,ξr,v and Rτ,ξ in (4.2) and (3.15) respectively, it holds that
Lemma 19 (Change of Frozen Point). Let (τ, ξ) be a freezing couple in [0, T ]× Rnd and ξ̃ another freezing
point in Rnd. Then, any classical solution u in L∞(0, T ;Cα+β

b,d (Rnd)) of Equation (1.1) can be represented
for any (t,x) in [0, T ]× Rnd as

u(t,x) = P̃ τ,ξ̃t,T g(x) + G̃τ,ξt,t0f(t,x) + G̃τ,ξ̃t0,T f(t,x)

+
∫ t0

t

P̃ τ,ξt,s R
τ,ξ(s,x) ds+

∫ T

t0

P̃ τ,ξ̃t,s R
τ,ξ̃(s,x) ds+ P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξ̃t,t0u(t0,x) (5.46)

where t0 is the change of regime time defined in (4.16).

Proof. Fixed t in (0, T ), we start considering another point r in (t, T ). On (0, r), it is clear that u is again a
mild solution of equation (1.1) but with terminal condition u(r,x). Then, Duhamel expansion (3.16) can be
applied with respect to the frozen couple (τ, ξ), allowing us to write that

u(t,x) = P̃ τ,ξt,r g(x) +
∫ r

t

P̃ τ,ξt,s f(s,x) ds+
∫ r

t

P̃ τ,ξt,s R
τ,ξu(s,x) ds.

Noticing that u is independent from r, it is possible now to differentiate the above equality with respect to r
in (t, T ) to show that

0 = ∂r
[
P̃ τ,ξt,r u(r,x)

]
+ P̃ τ,ξt,r f(r,x) + P̃ τ,ξt,r R

τ,ξ(r,x). (5.47)

We highlight now that the above expression holds for any chosen frozen couple (τ, ξ) and any fixed time r.
Thus, it is possible to integrate it with respect to r for a fixed ξ between t and t0 and for another frozen
point ξ̃ between t0 and T , leading to

0 = P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξt,t u(t,x) +
∫ t0

t

P̃ τ,ξt,r f(r,x) dr +
∫ t0

t

P̃ τ,ξt,r R
τ,ξ(r,x) dr

+ P̃ τ,ξ̃t,T u(T,x)− P̃ τ,ξ̃t,t0u(t0,x) +
∫ T

t0

P̃ τ,ξ̃t,r f(r,x) dr +
∫ T

t0

P̃ τ,ξ̃t,r R
τ,ξ̃(r,x) dr.

With our previous notations, the above expression can be finally rewritten as

0 = P̃ τ,ξt,t0u(t0,x)− u(t,x) + G̃τ,ξt,t0f(t,x) +
∫ t0

t

P̃ τ,ξt,r R
τ,ξ(r,x) dr

+ P̃ τ,ξ̃t,T g(x)− P̃ τ,ξ̃t,t0u(t0,x) + G̃τ,ξ̃t0,T f(t,x) +
∫ T

t0

P̃ τ,ξ̃t,r R
τ,ξ̃(r,x) dr

and we have concluded.

Similarly to the off-diagonal case, we are going to apply the auxiliary estimates associated with the proxy
(Lemmas 15 and 16) in the current diagonal regime. Namely, taking s = t0 and (y,y′) = (x,x) in Lemma 15,
we know that there exists a constant C ≥ 1 such that for any t in [0, T ] and any x,x′ in Rnd,

if x1 = x′1,
∣∣(m̃t,x

t,t0(x)− m̃t,x′

t,t0 (x))1
∣∣ ≤ C‖F ‖Hdα+β(x,x′). (5.48)

Moreover, in order to control the perturbative term when a local diagonal regime appears, i.e. when the time
integration variable s is in [t0, T ], we will quite often use a Taylor expansion on the frozen density. To be
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able to exploit the already proven controls, such that the smoothing effect for the frozen density (Equation
(3.6)) or the Besov control (Lemma 12), we will need the following:

if s− t ≥ c0dα(x,x′),
∣∣Dϑ
xp̃

τ,ξ′(t, s,x+ λ(x′ − x),y)
∣∣ ≤ C

∣∣Dϑ
xp̃

τ,ξ′(t, s,x,y)
∣∣ (5.49)

for any multi-index ϑ in Nd such that |ϑ| ≤ 2 and any λ in [0, 1]. The proof of these results can be found in
Section A.2.

We are now ready to prove Propositions 17 and 18 when a global diagonal regime is considered.

Proof of Proposition 17 in the Diagonal Regime. We start recalling that in Lemma 17 we assumed
fixed a time t in [0, T ] and two spatial points x,x′ in Rnd such that xj = x′j if j 6= 1.
From the above representation (5.46) and the Duhamel-type formula (3.16), we know that

Dx1u(t,x)−Dx1u(t,x′) =
(
Dx1 P̃

τ,ξ̃
t,T g(x)−Dx1 P̃

τ ′,ξ′

t,T g(x′)
)

+
(
Dx1G̃

τ,ξ
t,t0f(t,x) +Dx1G̃

τ,ξ̃
t0,T

f(t,x)−Dx1G̃
τ ′,ξ′

t,T f(t,x′)
)

+
(∫ t0

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds+
∫ T

t0

Dx1 P̃
τ,ξ̃
t,s R

τ,ξ̃(s,x) ds−
∫ T

t

Dx1 P̃
τ ′,ξ′

t,s Rτ
′,ξ′(s,x′) ds

)
+
(
Dx1 P̃

τ,ξ
t,t0u(t0,x)−Dx1 P̃

τ,ξ̃
t,t0u(t0,x)

)
for some freezing couples (τ, ξ), (τ, ξ̃), (τ ′, ξ′) in [0, T ] × Rnd fixed but to be chosen later. To help the
readability of the following, we assume from this point further τ = τ ′ and ξ̃ = ξ′.

Control on frozen semigroup. We start focusing on the control of the frozen semigroup, i.e.∣∣Dx1 P̃
τ,ξ′

t,T g(x)−Dx1 P̃
τ,ξ′

t,T g(x′)
∣∣.

Since the freezing couples coincide, the control on the frozen semigroup can be obtained following the proof
of the Hölder control (Lemma 9) for the proxy.

Control on the Green kernel. As done before, we split the analysis with respect to the change of regime time
t0. Namely, we write∣∣Dx1G̃

τ,ξ
t,t0f(t,x) +Dx1G̃

τ,ξ̃
t0,T

f(t,x)−Dx1G̃
τ,ξ′

t,T f(t,x′)
∣∣

≤
∣∣Dx1G̃

τ,ξ
t,t0f(t,x)−Dx1G̃

τ,ξ′

t,t0 f(t,x′)
∣∣+∣∣Dx1G̃

τ,ξ̃
t0,T

f(t,x)−Dx1G̃
τ,ξ′

t0,T
f(t,x′)

∣∣.
While in the local off-diagonal regime, the first term in the r.h.s. of the above expression can be handled as
in the global off-diagonal regime, the local diagonal regime contribution represented by∣∣Dx1G̃

τ,ξ̃
t0,T

f(t,x)−Dx1G̃
τ,ξ′

t0,T
f(t,x′)

∣∣ =
∣∣Dx1G̃

τ,ξ′

t0,T
f(t,x)−Dx1G̃

τ,ξ′

t0,T
f(t,x′)

∣∣
since ξ̃ = ξ′, can be controlled following again the proof of the Hölder control (Lemma 9) for the proxy.

Control on the discontinuity term. We can now focus on the contribution∣∣Dx1 P̃
τ,ξ
t,t0u(t0,x)−Dx1 P̃

τ,ξ̃
t,t0u(t0,x)

∣∣,
arising from the change of freezing point in the representation (5.46).
Since at fixed time t0, the function u shows the same spatial regularity of g, this control can be handled
following the paragraph in the proof of the Hölder control for the proxy (Lemma 9) concerning the frozen
semigroup in the off-diagonal regime. The only main difference is in Equation (4.18) where, this time, we
need to take (τ, ξ, ξ′) = (t,x,x′) and exploit the sensitivity estimate (Lemma 16) to control the quantity

d(m̃τ,ξ
t,t0(x), m̃τ,ξ′

t,t0 (x)).
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In the end, it is possible to show again (cf. Equation (4.21)) that∣∣Dx1 P̃
τ,ξ
t,t0u(t0,x)−Dx1 P̃

τ,ξ̃
t,t0u(t0,x)

∣∣ ≤ C‖u‖L∞(Cα+β
b,d

)c
α+β−1
α

0 dα+β−1(x,x′).

Control on the perturbative term. We start splitting the analysis into two cases with respect to the critical
time t0 giving the change of regime. Namely, we write∣∣∣∫ t0

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x) ds+
∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x) ds−

∫ T

t

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣
≤
∣∣∣∫ t0

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x)−Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣+ ∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣.
We then notice that the local off-diagonal regime represented by∣∣∣∫ t0

t

Dx1 P̃
τ,ξ
t,s R

τ,ξ(s,x)−Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣
can be handled following the proof in the global off-diagonal regime of Lemma 17.
We can then focus our attention on the local diagonal regime, i.e.∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣.
Since the freezing couples coincide, we can use a Taylor expansion with respect to the first variable x1 and
write that∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣
=
∣∣∣∫ T

t0

∫
Rnd

∫ 1

0
D2
x1
p̃τ,ξ

′
(t, s,x+ λ(x′ − x),y)(x′ − x)1R

τ,ξ′(s,y) dydsdλ
∣∣∣.

Noticing that we are integrating from t0 to T , equation (5.49) can be rewritten as∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣≤ |(x′ − x)1|
n∑
j=1

∫ 1

0

∫ T

t0

∣∣∣∫
Rnd

D2
x1
p̃τ,ξ

′
(t, s,x,y)

{[
Fj(s,y)− Fj(s,θt,s(ξ′))

]
·Dyju(s,y)

}
dy
∣∣∣dsdλ =: |(x− x′)1|

n∑
j=1

∫ T

t0

Idj (s)ds (5.50)

As done before, we are going to treat separately the cases j = 1 and j > 1. In the first case, the term Id1 can
be easily controlled by

Id1 (s) ≤ ‖Dy1u‖L∞(L∞)

∫
Rnd

∣∣D2
x1
p̃τ,ξ

′
(t, s,x,y)

∣∣ ∣∣F1(s,y)− F1(s,θt,s(ξ′))
∣∣ dy

≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)(s− t)
β−2
α (5.51)

where in the last passage we used the smoothing effect for the frozen density p̃τ,ξ (Equation (3.6)).
On the other side, the case j > 1 can be exploited using the second Besov control (Lemma 12). For this
reason, we start using integration by parts formula to show that

Idj (s) =
∣∣∣∫

Rnd
Dyj ·

{
D2
x1
p̃τ,ξ

′
(t, s,x,y)⊗

[
Fj(s,y)− Fj(s,θt,s(ξ′))

]}
u(s,y) dy

∣∣∣.
Through the duality in Besov spaces (4.11) and the identification (4.10), we then write that

Idj (s) ≤

C‖u‖L∞(Cα+β
b,d

)

∫
R(n−1)d

‖Dyj ·
{
D2
x1
p̃τ,ξ

′
(t, s,x,yrj , ·)⊗

[
Fj(s,yrj , ·)− Fj(s,θt,s(ξ′))

]}
‖
B
−(αj+βj)
1,1

dyrj .
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We can now apply the Second Besov control (Lemma 12) to show that

Idj (s) ≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)(s− t)
β−2
α . (5.52)

Going back at Equations (5.50) (5.51) and (5.52), we can write that

∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s R
τ,ξ′(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)|(x− x
′)1|
∫ T

t0

(s− t)
β−2
α ds

≤ C‖F ‖H‖u‖L∞(Cα+β
b,d

)|(x− x
′)1|(t0 − t)

α+β−2
α (5.53)

where in the last passage we used that α+β−2
α < 0 to pick the starting point t0 in the integral.

Using that t0 − t = c0d
α(x,x′), we can conclude that∣∣∣∫ T

t0

Dx1 P̃
τ,ξ′

t,s Rτ,ξ
′
(s,x)−Dx1 P̃

τ,ξ′

t,s Rτ,ξ
′
(s,x′) ds

∣∣∣≤ Cc
α+β−2
α

0 ‖F ‖H‖u‖L∞(Cα+β
b,d

)d
α+β−1(x,x′).

We can conclude this section showing the Hölder control in the degenerate setting when a diagonal regime is
assumed.

Proof of Proposition 18 in Diagonal Regime. We start recalling that in proposition (18) we assumed
fixed a time t in [0, T ] and two spatial points x,x′ in Rnd such that xj = x′j if j 6= i for some i in J2, nK.

Representation (5.46) and Duhamel-type expansion (3.16) allows to control the Holder modulus of a solution
u analyzing separately the different terms:

u(t,x)− u(t,x′) =
(
P̃ τ,ξ̃t,T g(x)− P̃ τ

′,ξ′

t,T g(x′)
)

+
(
G̃τ,ξt,t0f(t,x) + G̃τ,ξ̃t0,T f(t,x)− G̃τ

′,ξ′

t,T f(t,x′)
)

+
(∫ t0

t

P̃ τ,ξt,s R
τ,ξ(s,x) ds+

∫ T

t0

P̃ τ,ξ̃t,s R
τ,ξ̃(s,x) ds−

∫ T

t

P̃ τ
′,ξ′Rτ

′,ξ′(s,x′) ds
)

+
(
P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξ̃t,t0u(t0,x)

)
for some freezing couples (τ, ξ), (τ, ξ̃), (τ, ξ′) fixed but to be chosen later. As done before, we assume however
from this point further that τ = τ ′ and ξ̃ = ξ′.

Control on the frozen semigroup. Noticing that we have taken the same freezing couples since ξ̃ = ξ′, the
control on the frozen semigroup

∣∣P̃ τ,ξ′t,T g(x)− P̃ τ,ξ
′

t,T g(x′)
∣∣ can be obtained exploiting the same argument used

in the proof of the Hölder control (Lemma 10) for the proxy.

Control on the Green kernel. The proof of this estimate essentially matches the previous, analogous one in
the non-degenerate setting. Namely, we follow the proof in the global off-diagonal regime of Proposition 18
to control the local off-diagonal regime contribution

∣∣G̃τ,ξt,t0f(t,x)− G̃τ,ξ
′

t,t0 f(t,x′)
∣∣ while in the locally diagonal

regime term ∣∣G̃τ,ξ′t0,T
f(t,x)− G̃τ,ξ

′

t0,T
f(t,x′)

∣∣,
the freezing couples coincide and we can thus exploit the same argument used in the proof of the Hölder
control (Lemma 10) for the proxy.

Control on the discontinuity term. The proof of this result will follow essentially the one about the off-diagonal
regime of the frozen semigroup with respect to the degenerate variables. It holds that

P̃ τ,ξt,t0u(t0,x) =
∫
Rnd

p̃τ,ξ(t, t0,x,y)u(t0,y) dy

=
∫
Rnd

1
det
(
Mt0−t

)pS(t0 − t,M−1
t0−t

(
m̃τ,ξ
t,t0(x)− y

)
u(t0,y) dy

=
∫
Rnd

1
det
(
Mt0−t

)pS(t0 − t,M−1
t0−tz

)
u(t0, m̃τ,ξ

t,t0(x)− z) dz
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where in the last passage we used the change of variable z = m̃τ,ξ
t,t0(x)− y. Since a similar argument works

also for P̃ ξ
′

t,t0u(t0,x), it then follows that

∣∣P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξ
′

t,t0 u(t0,x)
∣∣

=
∣∣∣∫

Rnd

1
det
(
Mt0−t

)pS(t0 − t,M−1
t0−tz

)[
u(t0, m̃τ,ξ

t,t0(x)− z)− u(t0, m̃τ,ξ′

t,t0 (x)− z)
]
dz
∣∣∣

Remembering that u(t0, ·) is Lipschitz with respect to the first non-degenerate variable, we can write now
that∣∣P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξ

′

t,t0 u(t0,x)
∣∣

≤ C‖u‖L∞(Cα+β
b,d

)
[
dα+β(m̃τ,ξ

t,t0(x), m̃τ,ξ′

t,t0 (x)) +
∣∣(m̃τ,ξ

t,t0(x)−m̃τ,ξ′

t,t0 (x))1
∣∣] ∫

Rnd
pS
(
t0− t,M−1

t0−tz
) dz

det
(
Mt0−t

)
≤ C‖u‖L∞(Cα+β

b,d
)
[
dα+β(m̃τ,ξ

t,t0(x), m̃τ,ξ′

t,t0 (x)) +
∣∣(m̃τ,ξ

t,t0(x)− m̃τ,ξ′

t,t0 (x))1
∣∣].

Taking (ξ = ξ′ = x), we can then use the sensitivity controls (Lemma 16 and Equation (5.48)) to show that

∣∣P̃ τ,ξt,t0u(t0,x)− P̃ τ,ξ
′

t,t0 u(t0,x)
∣∣ ≤ C‖u‖L∞(Cα+β

b,d
)‖F ‖Hc

α+β
1+α(n−1)
0 dα+β(x,x).

Control on the perturbative term. The proof of this Estimate essentially matches the previous, analogous
one in the non-degenerate setting. Namely, Inequalities (5.51), (5.52) and (5.53) hold again with (s− t) β−2

α

replaced by (s− t)
β
α−

1
αi .

5.2.3 Mollifying Procedure

We now make the mollifying parameter m appear again using the notations introduced in Section 3.2 (see
Equation (3.16)). Then, Lemmas 13, 17 and 18 rewrite together in the following way. There exists a constant
C > 0 such that for any m in N,

‖um‖L∞(Cα+β
b,d

) ≤ Cc
β−γn
α

0
[
‖gm‖Cα+β

b,d
+ ‖fm‖L∞(Cβ

b,d
)
]

+ C
(
c
β−γn
α

0 ‖Fm‖H + c
α+β−1

1+α(n−1)
0

)
‖um‖L∞(Cα+β

b,d
) (5.1)

where c0 is assumed to be fixed but chosen later. Importantly, c0 and C does not depends on the regularizing
parameter m. Thus, letting m go to ∞ and remembering the definition 1 of mild solution u, the above
expression immediately implies the A priori estimates (Proposition 4).

6 Existence Result
The aim of this section is to show the well-posedness in a mild sense of the original IPDE (1.1). Recalling
Definition 1 for a mild solution of the IPDE (1.1), let us consider three sequences {fm}m∈N, {gm}m∈N and
{Fm}m∈N of "regularized" coefficients such that

• {fm}m∈N is in C∞b ((0, T )× Rnd) and fm converges to f in L∞
(
0, T ;Cβb,d(Rnd)

)
;

• {gm}m∈N is in C∞b (Rnd) and gm converges to g in Cα+β
b,d (Rnd);

• {Fm}m∈N is in C∞b ((0, T )× Rnd;Rnd) and ‖Fm − F ‖H converges to 0.

It can be derived through stochastic flows techniques (see e.g. [Kun04]) that there exists a solution um in
C∞b ((0, T )× Rnd) of the "regularized" IPDE:{

∂tum(t,x) + Lαum(t,x) + 〈Ax+ Fm(t,x), Dxum(t,x)〉 = −fm(t,x) on (0, T )× Rnd,
um(T,x) = gm(x) on Rnd.
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In order to pass to the limit in m, we notice now the arguments above for the proof of the Schauder estimates
(Equation (2.19)) can be applied to the above dynamics, too. Namely, there exists a constant C > 0 such that

‖um‖L∞(Cα+β
b,d

) ≤ C
[
‖fm‖L∞(Cβ

b,d
) + ‖gm‖Cα+β

b,d

]
≤ C

[
‖f‖L∞(Cβ

b,d
) + ‖g‖Cα+β

b,d

]
.

Importantly, the above estimates is uniformly in m and thus, the sequence {um}m∈N is bounded in the space
L∞
(
Cα+β
b,d (Rnd)

)
. From Arzelà-Ascoli Theorem, we deduce now that there exists u in L∞

(
Cα+β
b,d (Rnd)

)
and

a sequence {umk}k∈N of smooth and bounded functions converging to u in L∞
(
Cα+β
b,d (Rnd)

)
and such that

umk is solution of the "regularized" IPDE (2.18). It is then clear that u is a mild solution of the original
IPDE (1.1).

From Mild to Weak Solutions We conclude showing that any mild solution u of the IPDE (1.1) is
indeed a weak solution. The proof of this result will be essentially an application of the arguments presented
before, especially the Second Besov Control (Lemma 12). Let u be a mild solution of the IPDE (1.1) in
L∞
(
0, T ;Cα+β

b,d (Rnd)
)
. Recalling the definition of weak solution in (2.16), we start fixing a test function φ in

C∞0
(
(0, T ]×Rnd

)
and passing to the "regularized" setting (see Definition 1), we then notice that it holds that∫ T

0

∫
Rnd

φ(t,y)
(
∂t + Lm,α

)
um(t,y) dy = −

∫ T

0

∫
Rnd

φ(t,y)fm(t,y) dy

where Lm,α is the "complete" operator defined in (2.15) but with respect to the regularized coefficients.
An integration by parts allows now to move the operators to the test function. Indeed, remembering that
um(T, ·) = gm(·), it holds that∫ T

0

∫
Rnd

(
−∂t+L∗m,α

)
φ(t,y)um(t,y) dydt+

∫
Rnd

φ(T,y)gm(y) dy = −
∫ T

0

∫
Rnd

φ(t,y)fm(t,y) dydt (6.2)

where L∗m,α denotes the formal adjoint of Lm,α. We would like now to go back to the solution u, letting m
go to ∞. We start rewriting the right-hand side term in the following way:∫ T

0

∫
Rnd

φ(t,y)fm(t,y) dydt =
∫ T

0

∫
Rnd

φ(t,y)f(t,y) dydt+
∫ T

0

∫
Rnd

φ(t,y)
[
fm − f

]
(t,y) dydt.

Exploiting that by assumption, fm converges to f in L∞(0, T ;Cβb,d(Rnd)), it is easy to see that the second
contribution above goes to 0 if we let m go to ∞. A similar argument can be used to show that∫

Rnd
φ(T,y)gm(y) dy m→

∫
Rnd

φ(T,y)g(y) dy.

On the other hand, we can decompose the first term in the left-hand side of Equation (6.2) as∫ T

0

∫
Rnd

(
−∂t + L∗m,α

)
φ(t,y)um(t,y) dydt =

∫ T

0

∫
Rnd

(
−∂t + L∗α

)
φ(t,y)u(t,y) dydt+R1

m +R2
m (6.3)

where above we have denoted

R1
m =

∫ T

0

∫
Rnd

[
L∗α − L∗m,α

]
φ(t,y)um(t,y) dydt

R2
m =

∫ T

0

∫
Rnd

(
−∂t + L∗α

)
φ(t,y)

[
um(t,y)− u(t,y)

]
dydt

with L∗α as the formal adjoint of the complete operator Lα. Noticing that[
L∗α − L∗m,α

]
φ(t,y) = Dy ·

{
φ(t,y)[F (t,y)− Fm(t,y)]

}
,

it is clear that the remainder contribution R1
m can be essentially handled as in the introduction of Section

5.1, exploiting that ‖F − Fm‖H → 0.
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To control instead the second contribution R2
m, we start decomposing it as

R2
m = −

∫ T

0

∫
Rnd

∂tφ(t,y)
[
um − u

]
(t,y) dydt+

n∑
j=1

∫ T

0

∫
Rnd

Dyj
[
φFj

]
(t,y)

[
um − u

]
(t,y) dydt

=: R2
0,m +

n∑
j=1

R2
j,m.

We firstly observe that |R2
0,m| goes to 0 if we let m go to ∞, since ‖u − um‖L∞(Cα+β

b,d
)
m→ 0. On the other

hand, an integration by parts allows to show that

|R2
1,m| =

∣∣∣∫ T

0

∫
Rnd

[
φF
]
(t,y)Dyj

[
um − u

]
(t,y) dydt

∣∣∣
which again tends to 0 when m goes to ∞. To control instead the contributions Rmj,m for j > 1, the point is
to use the Besov duality argument again. Namely, from Equations (4.11), (4.10) and with the notations in
(4.7), it holds that

|R2
j,m| ≤

∫ T

0

∫
Rd(n−1)

∥∥Dyj [φF ](t,yrj , ·)∥∥B−(αj+βj)
1,1

∥∥[um − u](t,yrj , ·)∥∥
B
αj+βj
∞,∞

dyrjdt

≤
∫ T

0

∫
Rd(n−1)

∥∥Dyj [φF ](t,yrj , ·)∥∥B−(αj+βj)
1,1

∥∥[um − u](t,yrj , ·)∥∥
C
αj+βj
b

dyrjdt.

Following the same arguments in the Proof of the Second Besov Control (Lemma 12), we know that there
exists a constant C such that

∥∥Dyj [φF ](t,yrj , ·)∥∥Bαj+βj
1,1

≤ Cψj(t,yrj) where ψj has compact support on

Rd(n−1).
Since moreover ‖um − u‖ goes to zero with m, we easily deduce that R2

m,j
m→ 0 for any j in J2, nK. From the

above controls, we can deduce now that R1
m +R2

m
m→ 0. From Equation (6.3), it then follows that∫ T

0

∫
Rnd

(
−∂t + L∗m,α

)
φ(t,y)um(t,y) dydt m→

∫ T

0

∫
Rnd

(
−∂t + L∗α

)
φ(t,y)u(t,y) dydt

and we have concluded.

7 Extensions
As already said in the introduction, our assumption of (global) Hölder regularity on the drift F̄ , as well as the
choice of considering a perturbed Ornstein-Uhlenbeck operator instead of a more general non-linear dynamics,
was done to preserve, as possible, the clarity and understandability of the article. In this conclusive section,
we would like to explain briefly how it possible to naturally extend it.

7.1 General Drift
We start illustrating how the perturbative method explained above can be easily adapted to work in a more
general setting. In particular, the same results (Schauder-type estimates and well-posedness of the IPDE
(1.1)) can be shown also for an equation of the form:{

∂tu(t,x) + Lαu(t,x) + 〈F̄ (t,x), Dxu(t,x)〉 = −f(t,x), on (0, T )× Rnd

u(T,x) = g(x) on Rnd.
(7.1)

where F̄ (t,x) =
(
F̄1(t,x), . . . , F̄n(t,x)

)
has the following structure

F̄i(t,x(i−1)∨1, . . . ,xn).

We remark in particular that if for any i in J2, nK, F̄i is linear with respect to xi−1 and independent from
time, the previous analysis works since we can rewrite F̄ (t,x) = Ax+ F (t,x).
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In order to deal with this more general dynamics addressed in the diffusive setting in [CdRHM18], we will
need however to add some additional constraints and to modify slightly the ones presented in assumption
(A). First of all, the non-degeneracy assumption (H) does not make sense in this new framework and it will
be replaced by the following condition:

(H’) the matrix Dxi−1F̄i(t,x) has full rank d for any i in J2, nK and any (t,x) in [0, T ]× Rnd.

In particular, we will say that assumption (Ā) is in force when

(S’) assumption (ND) and (H’) are satisfied and the drift F̄ = (F̄1, . . . , F̄n) is such that for any i in J2, nK,
F̄i depends only on time and on the last n− (i− 2) ∨ 0 components, i.e. F̄i(t,xi−1, . . . ,xn);

(P’) α is a number in (0, 2), β is in (0, 1) and it holds that

β < α, α+ β ∈ (1, 2) and β < (α− 1)(1 + α(n− 1));

(R’) The source f is in L∞(0, T ;Cβb,d(Rnd)), the terminal condition g is in Cα+β
b,d (Rnd) and for any i in J1, nK,

F̄i belongs L∞(0, T ;Cγi+βd (Rnd)) where γi was defined in (2.14).

To prove Schauder-type estimates for a solution of equation (7.1), our idea is to adapt the perturbative
approach to this new dynamics. In particular, we can exploit the differentiability of F̄i with respect to xi−1
to "linearize" it along a flow that takes into account the perturbation (cf. Section 3.1). Namely, we are
interested in:{

∂tū
τ,ξ(t,x) + Lαū

τ,ξ(t,x) +
〈
Āτ,ξt

(
x− θ̄τ,t(ξ)

)
+ F̄ (t, θ̄τ,t(ξ)), Dxūτ,ξ(t,x)

〉
= −f(t,x),

ūτ,ξ(T,x) = g(x)
(7.2)

where the time-dependent matrix Āτ,ξt is defined through

[
Āτ,ξt

]
i,j

=
{
Dxi−1F̄i(t,θτ,t(ξ)), if j = i− 1
0d×d, otherwise

and θ̄τ,t(ξ)) is a fixed flow satisfying the dynamics

θ̄τ,t(ξ) = ξ +
∫ t

τ

F̄ (v, θ̄τ,v(ξ)) dv. (7.3)

A first significant difference with respect to the previous approach consists in handling a time-dependent
matrix Āτ,ξt . Indeed, it is possible to modify slightly the presentation in [PZ09] (allowing time-dependency
on A) in order to show that under assumption (S’), the two parameters semigroup

(
P̄ τ,ξt,s

)
t≤s associated with

the proxy operator
Lα + 〈Āτ,ξt

(
x− θ̄τ,t(ξ)

)
+ F̄ (t, θ̄τ,t(ξ)), Dx〉

admits a density p̄τ,ξ and that it can be rewritten as

p̄τ,ξ(t, s, x, y) = 1
det(Ms−t)

pS
(
s− t,M−1

s−t(y − m̄
τ,ξ
t,s (x))

)
.

Here, the notations for pS and Mt remain the same of above while this time the shift m̄τ,ξ
t,s is defined through

m̄τ,ξ
t,s (x) = R

τ,ξ
t,sx+

∫ s

t

Rτ,ξv,s
[
F̄ (v, θ̄τ,v(ξ))− Āτ,ξv θ̄τ,v(ξ)

]
dv

where R
τ,ξ
t,s is the time-ordered resolvent of Āτ,ξs starting at time t, i.e.{

dRτ,ξt,s = Āτ,ξs R
τ,ξ
t,s ds, on [t, T ]

R
τ,ξ
t,t = I.

We can as well refer to [HM16] for related issues (see Proposition 3.2 and Section C about the linearization,
therein).
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Following the same reasonings of Propositions 2 and 3, it is then possible to state a Duhamel type formula
suitable for the IPDE 7.1:

u(t,x) = P̄ τ,ξt,T g(x) +
∫ T

t

P̄ τ,ξt,s
[
f(s, ·) + R̄τ,ξ(s, ·)

]
(x) ds (7.4)

where the remainder term is given now by

R̄τ,ξ(t,x) = 〈F (t,x)− F (t, θ̄τ,t(ξ))− Āτ,ξt
(
x− θ̄τ,t(ξ)

)
, Dxu(t,x)〉.

Looking back at the first part of the article, it is important to notice that the main steps of proof (cf. Equation
(3.6), Propositions 1, 4 and Section 3.3) does not rely on the explicit formulas for m̄τ,ξ

t,s (x) and R̄τ,ξ but
instead, they exploit only the Besov controls for the remainder R̄τ,ξ (cf. Section 5.1 ) and the controls on the
shift m̄τ,ξ

t,s (x) (Section A.2). Hence, once we have proven the suitable controls, the proofs of the analogous
results for the new dynamics (7.1) can be obtained easily modifying slightly the notations and following the
same reasonings above.
For example, exploiting that

m̄τ,ξ
t,s (x) = x+

∫ s

t

R
τ,ξ
t,v

(
m̄τ,ξ
t,v (x)− θτ,v(ξ)

)
+ F (v,θτ,v(ξ)) dv,

we can follow the same method of proof in the above lemma 2 to show again that

m̄τ,ξ
t,s (x) = θ̄τ,s(ξ)

taking τ = t and ξ = x.

Letting the interested reader look in the appendix for the suggestions on how to extend the controls on the
shift m̄τ,ξ

t,s (x) in this more general setting, we will focus now on proving the Besov controls. First of all, we
notice immediately that the proof of the first Besov control 7 relies essentially only on the smoothing effect
(3.6) and thus, it can be obtained following the same reasoning above. The proof of the second Besov control
(Lemma 12) in this framework is a bit more involved and we are going to explain it below more in details.
We start noticing that the second Besov Lemma 12 can be reformulated for the new dynamics in the following
way∫

R(n−1)d

∥∥∥Dyj · {Dϑ
xp̄

τ,ξ(t, s,x,yrj , ·)⊗ ∆̄τ,ξ
j (s,yrj , ·)

}∥∥∥
B
−(αj+βj)
1,1

dyrj ≤ C‖F̄ ‖H(s− t)
β
α−
∑n

k=1
ϑk
αk

taking (τ, ξ) = (t,x), where we have denoted for simplicity

∆̄τ,ξ
j (s,y) := F̄j(s,y)− F̄j(s,θτ,s(ξ))−Dxj−1F̄j(s,θτ,s(ξ))

(
y − θτ,s(ξ)

)
j−1

for any j in J2, nK. The above control can be obtained mimicking the proof in the second Besov control
(Lemma 12), exploiting this time that

|∆̄τ,ξ
j (s,y)| ≤ C‖F̄ ‖Hd1+α(j−2)+β

j−1:n
(
y, θ̄τ,s(ξ)

)
and the additional assumption (P’) in order to make the partial smoothing effect (Equation (5.29)) work in
this framework too.
The main difference in the proof is related to the control of the component J2(v,yrj , z) appearing in Equation
(5.34). Namely,∫

Rd
Dz∂vph(v, z − yj) ·

{
∆̄τ,ξ
j (s,yrj , z)⊗

∫ 1

0
DyjD

ϑ
xp̄

τ,ξ(t, s,x,yrj , z + λ(yj − z)) · (yj − z)
}
dλdyj

with our new notations. Indeed, the dependence of F̄ on xj−1 pushes us to add a new term in the difference
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|F̄j(s,yrj , z)− F̄j(s,θτ,s(ξ))| (now, |∆̄τ,ξ
j (s,yrj , z)|) before splitting it up. In particular,

|∆̄τ,ξ
j (s,yrj , z)|
=
∣∣F̄j(s,yrj , z)− F̄j(s,θτ,s(ξ))−Dxj−1F̄j(s, θ̄τ,s(ξ))

(
y − θ̄τ,s(ξ)

)
j−1 ± F̄j(s,y1:j−1,

(
θ̄τ,s(ξ)

)
j:n)
∣∣

≤ C‖F̄ ‖H
(
|z −

(
θ̄τ,s(ξ)

)
j
|

1+α(j−2)+β
1+α(j−1) +

n∑
k=j+1

|
(
y − θ̄τ,s(ξ)

)
k
|

1+α(j−2)+β
1+α(k−1) + |

(
y − θ̄τ,s(ξ)

)
j−1|

1+α(j−2)+β
1+α(j−2)

)
≤ C‖F̄ ‖H

(
|λ(z − yj)|

1+α(j−2)+β
1+α(j−1) + |z + λ(yj − z)− θτ,s(ξ)j |

1+α(j−2)+β
1+α(j−1) +

n∑
k=j+1

|y − θ̄τ,s(ξ)k|
1+α(j−2)+β

1+α(k−1)

+ |
(
y− θ̄τ,s(ξ)

)
j−1|

1+α(j−2)+β
1+α(j−2)

)
≤ C‖F̄ ‖H

(
|z−yj |

1+α(j−2)+β
1+α(j−1) +d

1+α(j−2)+β
j+1:n ((yrj , z+λ(yj − z)), θ̄τ,s(ξ))

)
.

The remaining part of the proof exactly matches the original method in Lemma 12.

Even in this more general framework, it is thus possible to obtain the following:
Theorem 3 (Well-posedness). Under (Ā), there exists a unique mild solution u of (7.1) such that

‖u‖L∞(Cα+β
d

) ≤ C
[
‖f‖L∞(Cβ

b,d
) + ‖g‖Cα+β

b,d

]
.

7.2 Locally Hölder Drift
This part is designed to give a brief explanation on how it is possible to deal with the general IPDE (7.1)
when the drift F̄ is only locally Hölder continuous in space. Namely, we assume with the notations in (2.14)
that

(LR’) there exists a constant K0 > 0 such that for any i in J1, nK

d(F̄ (t,x), F̄ (t,x′)) ≤ K0d
β+γi(x,x′), t ∈ [0, T ], x,x′ ∈ Rnd s.t. d(x,x′) < 1.

In other words, it is required that F̄i is in L∞(0, T ;Cβ+γi(B(x0, 1/2))), uniformly in x0 ∈ Rnd.

Under assumption (Ā) (with condition (R’) replaced by (LR’)), it is possible to recover the Schauder-type
estimates (Theorem 1), following the approach developed successfully in [CdRMP19] for the non-degenerate,
super-critical stable setting. Roughly speaking, in order to handle the local assumption, as well as the
potentially unboundedness of the drift F̄ , we need to introduce a "localized" version of the Duhamel formulation
(cf. Equation (3.16)). The key point here is to multiply a solution u by a suitable bump function η̄τ,ξ that
"localizes" in space along the deterministic flow θ̄τ,t(ξ) that characterizes the proxy. Namely, we fix a smooth
function ρ that is equal to 1 on B(0, 1/2) and vanishes outside B(0, 1)) and then define for any (τ, ξ) in
[0, T ]× Rnd,

η̄τ,ξ(t,x) := ρ(x− θ̄τ,t(ξ)).

We mention however that in the setting of [CdRMP19], the "localization" with the cut-off function η̄τ,ξ is not
simply motivated by the local Hölder continuity condition but it is also needed to give a proper meaning to
the Duhamel formulation for a solution (cf. Proposition 3) when α < 1/2, because of the low integrability
properties of the underlying stable density. Such a problem does not however appear here since condition (P)
forces us to consider only the case α > 1/2.

Given a mild solution u of the IPDE (7.1) assuming F̄ to be only locally Hölder continuous as in [LR’], it is
possible to show, at least formally, that the function v̄τ,ξ := uη̄τ,ξ solves the following equation{

∂tv̄
τ,ξ(t,x) + 〈F̄ (t,x), Dxv̄τ,ξ(t,x)〉+ Lαv̄

τ,ξ(t,x) = −
[
η̄τ,ξf + S̄τ,ξ

]
(t,x) on [0, T ]× Rnd;

v̄τ,ξ(T,x) = η̄τ,ξ(T,x)g(x) on Rnd,
(7.5)

where we have denoted above

S̄τ,ξ(t,x) :=
∫
Rd

[
u(t,x+By)− u(t,x)

][
η̄τ,ξ(t, t,x+By)− η̄τ,ξ(t,x)

]
να(dy)

− u(t,x)〈F̄ (t,x)− F̄ (t, θ̄τ,t(ξ)), Dρ(x− θ̄τ,t(ξ))〉.
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The IPDE (7.5) can be seen essentially as a "local" version of the original one (7.1), depending on the freezing
parameter (τ, ξ). In particular, it is important to notice that the difference

F̄ (t,x)− F̄ (t, θ̄τ,t(ξ))

appearing in the "localizing" error S̄τ,ξ can be controlled exactly because it is multiplied by the derivative of
the bump function ρ in the right point x − θ̄τ,t(ξ), allowing us to exploit the local Hölder regularity. On
the other hand, the first integral term in the r.h.s. can be seen as a commutator which involves only the
non-degenerate variables and thus, that can be handled with interpolation techniques as in [CdRMP19].

Even with the additional difficulty in controlling the remainder term, the perturbative approach explained in
Section 3 can be applied, leading to show Schauder-type estimates as in Theorem 1 and the well-posedness of
the IPDE (7.1) when assuming F̄ to be only locally Hölder continuous.

Our procedure could be also used in order to establish Schauder-type estimates for the full Ornstein-Uhlenbeck
operator as done, for example, in [Lun97] for the diffusive case. Indeed, a general operator of the form
〈Āx, Dx〉+Lα can be treated, decomposing the matrix as Ā = A+U where A is, as before, the sub-diagonal
matrix that makes the Ornstein-Ulhenbeck operator invariant by the dilation operator associated with the
distance d, while U is an upper triangular matrix that could be seen as an additional locally Hölder term.

7.3 Diffusion Coefficient
We conclude the article showing briefly how an additional diffusion coefficient σ : [0, T ]×Rnd → Rd ⊗Rd can
be handled in the IPDE (7.1) with an operator Lalpha of the form:

Lαφ(t,x) := p.v.
∫
Rd

[
φ(t,x+Bσ(t,x)y)− φ(t,x)

]
να(dy).

In this framework, it is quite standard (cf. [HWZ19] and [ZZ18]) to assume the Lévy measure να to be
absolutely continuous with respect to the Lebesgue measure on Rd i.e. να(dy) = f(y)dy, for some Lipschitz
function f : Rd → R. In particular, since να is a symmetric, α-stable Lévy measure, it holds passing to polar
coordinates y = ρs where (ρ, s) ∈ [0,∞)× Sd−1 that

f(y) = g(s)
ρd+α

for an even, Lipschitz function g on Sd−1 (see also Equation (2.1)). Moreover, σ is considered uniformly
elliptic and in L∞(0, T ;Cβ(Rn,R)).
Introducing now the "frozen" operator L̄τ,ξα φ(t, x) = p.v.

∫
Rd
[
φ(t,x+Bσ(t, θ̄τ,t(ξ))y)− φ(t,x)

]
να(dy), this

would lead to consider for the IPDE an additional term in the Duhamel formula (cf. Equation (7.4)) that
would write:

u(t,x) = P̆ τ,ξt,T g(x) +
∫ T

t

P̆ τ,ξt,s f(s,x) + P̆ τ,ξt,s R̄
τ,ξ(s,x) + P̆ τ,ξt,s

[(
Lα − L̄τ,ξα

)
u(s, ·)

]
(x) ds. (7.6)

Here,
(
P̆ τ,ξt,s

)
t≤s denotes the two parameter semigroup associated with the proxy operator

L̄τ,ξα + 〈Āτ,ξt
(
x− θ̄τ,t(ξ)

)
+ F̄ (t, θ̄τ,t(ξ)), Dx〉.

Let us focus on the last term in the integral of Equation (7.6). Looking back at the proof of the A Priori
Estimates (Proposition 4), we notice in particular that we aim to establish the following control:∣∣(Lα − L̄τ,ξα )u(t,x)

∣∣ ≤ C‖σ‖L∞(Cβ
b,d

)‖u‖L∞(Cα+β
b,d

)d
β(x, θ̄τ,t(ξ)) (7.7)
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in order to apply the same reasoning above in this new framework. To this end, we write that(
Lα − L̄τ,ξα

)
u(t,x)

= p.v.
∫
Rd

{
u(t,x+Bσ(t,x)y)− u(t,x)

}
να(dy)−

∫
Rd

{
u(t,x+Bσ(t, θ̄τ,t(ξ))y)− u(t,x)

}
να(dy)

= p.v.
∫
Rd

{
u(t,x+Bz)− u(t,x)

}f(σ−1(t,x)z
)

detσ(t,x) dz −
∫
Rd

{
u(t,x+Bz)− u(t,x)

}f(σ−1(t, θ̄τ,t(ξ))z
)

detσ(t, θ̄τ,t(ξ))
dz

= p.v.
∫ ∞

0

1
ρ1+α

∫
Sd−1

{
u(t,x+Bρs)− u(t,x)

}
D̄τ,ξ(t,x, s) dsdρ

where we have denoted, for notational convenience

D̄τ,ξ(t,x, s) :=
{ g

( σ−1(t,x)s
|σ−1(t,x)s|

)
|σ−1(t,x)s|d+α detσ(t,x) −

g
( σ−1(t,θ̄τ,t(ξ))s
|σ−1(t,θ̄τ,t(ξ))s|

)
|σ−1(t, θ̄τ,t(ξ))s|d+α detσ(t, θ̄τ,t(ξ))

}
.

Using now that g is Lipschitz and the assumptions on σ, we can show that
|D̄τ,ξ(t,x, s)| ≤ C|σ(t,x)− σ(t, θ̄τ,t(ξ))| ≤ C‖σ‖L∞(Cβ

b,d
)d
β(x, θ̄τ,t(ξ)). (7.8)

Finally, Equation (7.7) follows from the previous controls using Taylor expansions and the symmetry condition
on να. Namely, considering the case α ≥ 1, which is the most delicate one for this part and precisely requires
the symmetry of g, we write that∣∣∣(Lα − L̄τ,ξα )u(t,x)

∣∣∣ =
∣∣∣p.v.∫ ∞

0

1
ρ1+α

∫
Sd−1

{
u(t,x+Bρs)− u(t,x)

}
D̄τ,ξ(t,x, s) dsdρ

∣∣∣
≤
∣∣∣p.v.∫

(0,1)

1
ρ1+α

∫
Sd−1

{
u(t,x+Bρs)− u(t,x)

}
D̄τ,ξ(t,x, s) dsdρ

∣∣∣
+
∫

(1,∞)

1
ρ1+α

∫
Sd−1

∣∣u(t,x+Bρs)− u(t,x)
∣∣ |D̄τ,ξ(t,x, s)| dsdρ =:

[
Īτ,ξs + Īτ,ξl

]
(t,x). (7.9)

The large jump contribution Īτ,ξl is easily handled from Equation (7.8). We get that

Īτ,ξl (t,x) ≤ 2C‖σ‖L∞(Cβ
b,d

)‖u‖L∞(L∞)d
β(x, θ̄τ,t(ξ)) ≤ 2C‖σ‖L∞(Cβ

b,d
)‖u‖L∞(Cα+β

b,d
)d
β(x, θ̄τ,t(ξ)). (7.10)

On the other hand, from the symmetry assumption on να, which transfers to g, we can control the small
jump contribution Īτ,ξs through Taylor expansion and a centering argument. Indeed,

Īτ,ξs (t,x) =
∣∣∣p.v.∫

(0,1)

1
ρ1+α

∫
Sd−1

∫ 1

0

[
Dx1u(t,x+ λBρs)−Dx1u(t,x)

]
ρsD̄τ,ξ(t,x, s) dλdsdρ

∣∣∣
≤ C‖σ‖L∞(Cβ

b,d
)d
β(x, θ̄τ,t(ξ))

∫
(0,1)

1
ρα

∫
Sd−1

∫ 1

0

∣∣Dx1u(t,x+ λBρs)−Dx1u(t,x)
∣∣ dλdsdρ

≤ C‖σ‖L∞(Cβ
b,d

)‖Dx1u‖L∞(Cα+β−1
b,d

)d
β(x, θ̄τ,t(ξ))

∫
(0,1)

1
ρα
ρα+β−1 dρ

≤ C‖σ‖L∞(Cβ
b,d

)‖u‖L∞(Cα+β
b,d

)d
β(x, θ̄τ,t(ξ)). (7.11)

Using Controls (7.10) and (7.11) in the decomposition (7.9), we obtain the expected bound (Equation (7.7)).
We remark that the case α < 1 could be handled similarly for the contribution Īτ,ξl and even more directly
for Īτ,ξs . Indeed, in that case, the centering argument is not needed since the Taylor expansion already yields
an integrable singularity.

A Appendix
A.1 Smoothing Effects for Ornstein-Ulhenbeck Operator
We state and prove here some of the key properties of the Ornstein-Uhlenbeck operator. Namely, we will
prove the representation (2.6) and the associated α-smoothing effect (2.8). We highlight however that these
results are only a slight modification to our purpose of those in [HMP19].

49



The two lemma below presents a deep connection with stochastic analysis and their proofs relies on tools
that are more familiar in the probabilistic realm. For this reason, we are going to consider the stochastic
counterpart of the Ornstein-Ulhenbeck operator Lou. Namely, for a given starting point x in Rnd, we are
interested in the following dynamics{

dXt = AXtdt+BdZt, on [0, T ]
X0 = x

(A.1)

where (Zt)t≥0 is an α-stable, Rnd-dimensional process with Lévy measure να, defined on some complete
probability space (Ω,F,F,P).
Lemma 20 (Representation). Under (A), the semigroup

(
P out

)
t>0 generated by the Ornstein-Ulehnbeck

operator Lou (defined in (2.4)) admits for any fixed t > 0, a density pou(t, ·) which writes for any t > 0 and
any x,y in Rnd

pou(t,x,y) = 1
detMt

pS(t,M−1
t

(
eAtx− y)

)
where Mt is the matrix defined in (2.7) and pS is the smooth density of an Rnd-valued, symmetric and α-stable
process S whose Lévy measure µS satisfies the non-degeneracy assumption (ND) on Rnd.

Proof. We start noticing that the above dynamics (A.1) can be explicitly integrated and gives

Xt = etAx+
∫ t

0
e(t−s)AB dZs.

It is then readily derived from [PZ09] that, for any t > 0, the random variable Xt has a density pX(t,x, ·)
with respect to the Lebesgue measure on Rnd and it is moreover well known (see for example [Dyn65]) that
pX coincides with the density pou of the Ornstein-Ulhenbeck operator Lou .
For this reason, we fix t ≥ 0 and consider, for a given N in N, a uniform partition {ti}i∈J0,NK of [0, t]. Then,
it holds for any p in Rnd,

E
[
exp
(
i〈p,

N∑
i=1

e(t−ti−1)AB
(
Zti − Zti−1

))
〉
]

= exp
(
− 1
N

N∑
i=1

∫
Sd−1
|〈B∗e(t−ti−1)A∗p, s〉|α µ(ds)

)
where µ is the spherical measure associated with να (see Equation (2.2)). By dominated convergence theorem,
we let m goes to infinity and show that

E
[
exp
(
i〈p,

∫ t

0
e(t−s)AB dZs

)]
= exp

(
−
∫ t

0

∫
Sd−1
|〈euA

∗
p, Bs〉µ(ds)du

)
.

Thanks to the above equation, we can rewrite the characteristic function of Xt as:

ψXt(p) = E
[
exp
(
i〈p, etAx+

∫ t

0
e(t−s)AB dZs

)]
= exp

(
i〈p, etAx〉 −

∫ t

0

∫
Sd−1
|〈euA

∗
p, Bs〉|α µ(ds)du

)
= exp

(
i〈p, etAx〉 − t

∫ 1

0

∫
Sd−1
|〈evtA

∗
p, Bs〉|α µ(ds)dv

)
where in the last passage we used the change of variables u = vt. For the next step, we firstly notice that it
holds

etA = Mte
AM−1

t ,

shown using the definition of matrix exponential and the trivial relation MtAM−1
t = tA. Exploiting the

above identity, we then find that

ψXt(p) = exp
(
i〈p, etAx〉 − t

∫ 1

0

∫
Sd−1
|〈Mtp, e

vAM−1
t Bs〉|α µ(ds)dv

)
= exp

(
i〈p, etAx〉 − t

∫ 1

0

∫
Sd−1
|〈Mtp, e

vABs〉|α µ(ds)dv
)
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where in the last passage we used the straightforward identity M1
tBy = By. We focus now only on the

double integral ∫ 1

0

∫
Sd−1
|〈Mtp, e

vABs〉|α µ(ds)dv.

If we consider the measure mα(dv, ds) := |evABs|αµ(ds)dv on [0, 1]× Sd−1 and the normalized lift function
l : [0, 1]× Sd−1 → Snd−1 given by

l(v, s) := evABs

|evABs|
,

it then follows that∫ 1

0

∫
Sd−1
|〈Mtp, e

vABs〉|α µ(ds)dv =
∫ 1

0

∫
Sd−1
|〈Mtp,

evABs

|evABs|
〉|αmα(ds, dv) =

∫
Snd−1

|〈Mtp, ξ〉|α µS(dξ)

where µS := Sym(l∗(mα)) is the symmetrized version of the measure mα push-forwarded through l. Noticing
that µS is the Lévy measure of a symmetric α-stable process (St)t≥0 satisfying assumption (ND) on Rnd, we
can finally write that

ψXt(p) = exp
(
i〈p, etAx〉 − tΨS(Mtp)

)
where ΨS is the Lévy symbol associated with St (cf. Equation (2.2)).
From Lemma A.1 in [HMP19], we know that under assumption (ND), the above calculations implies that∫ 1

0

∫
Sd−1

∣∣(Mtp) · (eAvBs)
∣∣α µS(ds)dv ≥ C|Mtp|α

for some constant C > 0. It follows in particular that the function p → ψXt(p) is in L1(Rnd). Thus, by
inverse fourier transform and a change of variables we can prove that

F−1[ψXt](y) = 1
(2π)nd

∫
Rnd

e−i〈p,y〉exp
(
i〈p, etAx〉 − tΨS(Mtp)

)
dp

= det(M−1
t )

(2π)nd
∫
Rnd

exp
(
−i
〈
M−1
t p,y − etAx

〉)
e−tΨ(p) dp

= det(M−1
t )

(2π)nd
∫
Rnd

exp
(
−i
〈
p,M−1

t

(
y − etAx

)〉)
e−tΨ(p) dp = 1

det(Mt)
pS(t,M−1(y − eAtx))

and we have concluded since pS is symmetric.

We can now point out the smoothing effect (Equation (2.8)) associated with the Ornstein-Uhlenbeck density
pou.
Lemma 21 (Smoothing Effect). Under (A), there exists a family {q(t, ·) : t ∈ [0, T ]} of densities on Rnd
such that

• for any l in J0, 3K, there exists a constant C := C(l, nd) such that |Dl
ypS(t,y)| ≤ Cq(t,y)t−l/α for any

t in [0, T ] and any y in Rnd;

• (stable scaling property) q(t,y) = t−nd/αq(1, t−1/αy) for any t in [0, T ] and any y in Rnd;

• (stable smoothing effect) for any γ in [0, α), there exists a constant c := c(γ, nd) such that∫
Rnd

q(t,y) |y|γ dy ≤ ctγ/α for any t > 0. (A.2)

Proof. Fixed a time t > 0, we start applying the Ito-Lévy decomposition to S at the associated characteristic
stable time scale, i.e. we choose to truncate at threshold t1/α, so that we can write St = Mt + Nt for
some Mt, Nt independent random variables corresponding to the small jumps part and the large jumps part,
respectively. Namely, we denote for any s > 0

Ns :=
∫ s

0

∫
|x|>t1/α

xP (du, dx) and Ms : = Ss −Ns
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where P is the Poisson random measure associated with the process S. We can thus rewrite the density pS
in the following way

pS(t,x) =
∫
Rnd

pM (t,x− y)PNt(dy)

where pM (t, ·) corresponds to the density of Mt and PNt is the law of Nt.
It is important now to notice that it is precisely our choice of the cutting threshold t1/α that gives M and N
the α-similarity property (for any fixed t)

Nt
law= t1/αN1 and Mt

law= t1/αM1

we will need below. Indeed, to show the assertion for N , we can start from the Lévy-Khintchine formula for
the characteristic function of N :

E
[
ei〈p,Nt〉

]
= exp

[
t

∫
Snd−1

∫ ∞
t1/α

(
cos(〈p, rξ〉)− 1

) dr

r1+αµS(dξ)
]

for any p in Rnd. We then use the change of variable rt−1/α = s to get that

E
[
ei〈p,Nt〉

]
= E

[
ei〈p,t

1/αN1〉].

This implies in particular our assertion on N . In a similar way, it is possible to get the analogous assertion
on M .
From lemma A.2 in [HMP19] with m = 3, we know that there exist a family {pM (t, ·)}t>0 of densities on
Rnd and a constant C := C(m,α) such that

|Dl
ypM (t,y)| ≤ CpM (t,y)t−l/α

for any t > 0, any x in Rnd and any l ∈ {0, 1, 2}.
Moreover, denoting M t the random variable with density pM (t, ·) and independent from Nt, we can easily
check from pM (t,y) = t−nd/αpM (1, t−1/αx) that M is α-selfsimilar

M t
law= t1/αM1.

We can finally define the family {q(t, ·)}t>0 of densities as

q(t,x) :=
∫
Rnd

pM (t,x− y)PNt(dy)

corresponding to the density of the random variable

St ; = M t +Nt

for any fixed t > 0. Using Fourier transform and the already proven α-selfsimilarity of M and N , we can
show now that

St
law= t1/αS1

or equivalently, that
q(t,y) = t−nd/αq(1, t−1/αy)

for any t in [0, T ] and any y in Rnd. Moreover,

E[|St|γ ] = E[|M t +Nt|γ ] = Ctγ/α
(
E[|M1|γ ] + E[|Nt|γ ]

)
≤ Ctγ/α.

This shows in particular that equation (A.2) holds.

We conclude this sub-section showing Control (5.49) appearing in the proof of Proposition 4 for the diagonal
regime. First of all, we will need the following lemma:
Lemma 22. Let t in [0, T ], x, b in Rnd such that |b| ≤ ct1/α for some constant c > 0. Under (A), there
exists a constant C := C(c) such that

|Dl
xpS

(
t,x+ b)| ≤ C̃|Dl

xpS
(
t,x)|

52



Proof. Looking back at the proof of the previous lemma 21, we know that

Dl
xpS(t,x+ b) =

∫
Rnd

Dl
xpM (t,x+ b− y)PNt(dy)

where pM (t, ·) is the density of Mt and PNt is the law of Nt, corresponding to the small and big jumps in the
Ito-Lévy decomposition.
From lemma A.2 in [HMP19] we know moreover that

|Dl
xpM (t,x+ b− y)| ≤ C

t
l
α

pM (t,x+ b− y) where pM (t, z) = C

t
nd
α

1(
1 + |z|

t
1
α

)3 .

It is then enough to show that

pM (t, z + b) = C

t
nd
α

1(
1 + |z+b|

t
1
α

)3 ≤
C̃

t
nd
α

1(
1 + c+ |z+b|

t
1
α

)3

≤ C

t
nd
α

1(
1 + c |z|

t
1
α
− |b|

t
1
α

)3 ≤
C

t
nd
α

1(
1 + |z|

t
1
α

)3 ≤ CpM (t, z).

to conclude the proof.

Proof of Equation (5.49). We start looking back to the proof of Lemma 3 to find that∣∣Dϑ
xp̃

τ,ξ′(t, s,x+ λ(x′ − x),y)
∣∣ = C(s− t)−

∑n

k=1
ϑk
αk

1
det(Ms−t)

∣∣D|ϑ|z pS
(
s− t, ·)(M−1

s−t(m̃
τ,ξ
t,s (x)− y)

)∣∣
Moreover, we notice that

M−1
s−t
(
m̃τ,ξ
t,s (x+ λ(x− x′))− y

)
= M−1

s−t
(
m̃τ,ξ
t,s (x)− y

)
+ λM−1

s−te
A(s−t)(x− x′).

Then, Control (5.49) follows immediately from the previous lemma once we have shown that∣∣λM−1
s−te

A(s−t)(x− x′)
∣∣ ≤ C(s− t)1/α

for some constant C := C(A). Indeed, fixed i in J1, nK, we can exploit the structure of A and Ms−t (cf.
Equation (2.13) in Scaling Lemma 1) to write that

[
M−1
s−te

A(s−t)(x− x′)
]
i

=
n∑
j=1

n∑
k=1

[
M−1
s−t
]
i,k

[
eA(s−t)]

k,j
(x− x′)j =

n∑
j=i

(s− t)−(i−1)Cj(s− t)i−j(x− x′)j .

Since moreover we assumed to be in a local diagonal regime, i.e. dα(x,x′) ≤ (s− t)1/α, we can conclude that

∣∣[M−1
s−te

A(s−t)(x−x′)
]
i

∣∣ ≤ C

n∑
j=i

(s−t)−(j−1)|(x−x′)j | ≤ C

n∑
j=i

(s−t)−(j−1)(s−t)
1+α(j−1)

α = C(s−t)1/α.

A.2 Technical Tools
In this section, we present the proof of some technical results already used in the article, for the sake of
completeness.
We recall moreover that the results below can be proven also for the flow θ̄τ,s(ξ) driven by a more general
perturbation F under assumption (Ā) (cf. Section 7.1), exploiting that F̄i is Lipschitz continuous in the
xi−1 variable for any i in J2, nK.

We begin proving Lemma 14 about the sensitivity of the Hölder flows, appearing in the proof of the a
priori estimates (3.18) of Proposition 4. For this reason, we will assume from this point further to be under
assumption (A’).
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Proof of Lemma 14. We start noticing that our result follows immediately using Young inequality, once
we have shown that it holds∣∣(θt,s(x)− θt,s(x′))i

∣∣ ≤ C
[
(s− t)

1+α(i−1)
α + d1+α(i−1)(x,x′)

]
for any i in J1, nK. (A.3)

Our proof will rely essentially in iterative applications of the Grönwall lemma. We notice however that under
(A), the perturbation Fi is only Hölder continuous with respect to its i-th variable. To overcome this problem,
we are going to mollify (but only with respect to the variable of interest) the function F in the following way:
fixed a mollifier ρ on Rd, i.e. a compactly supported, non-negative, smooth function such that ‖ρ‖L1 = 1
and a family δi of positive constants to be chosen later, the mollified version of the perturbation is given by
F δ = (F1,F

δ2
2 , . . . ,F δnn ) where

F δii (t, zi:n) := Fi ∗i ρδi(t, zi:n) =
∫
Rd
Fi(t, zi − ω,zi+1, . . . ,zn) 1

δdi
ρ(ω
δi

) dω.

We remark in particular that we do not need to mollify the first component F1 since it is regular enough, say
β-Hölder continuous in the first d-dimensional variable x1, by assumption (R).
Then, standard results on mollifier theory and our current assumptions on F show us that the following
controls hold

|Fi(u, z)− F δi (u, z)| ≤ ‖Fi‖L∞(Cγ+β
d

)δ
γi+β

1+α(i−1)
i , (A.4)

|F δi (u, z)− F δi (u, z′)| ≤ C‖Fi‖L∞(Cγ+β
d

)

[
δ

γi+β
1+α(i−1)−1
i |(z − z′)i|+

n∑
j=i+1

|(z − z′)j |
γi+β

1+α(j−1)
]
. (A.5)

We choose now δi for any i in J2, nK in order to have any contribution associated with the mollification
appearing in (A.4) at a good current scale time. Namely, we would like δi to satisfy∣∣((s− t) 1

αMs−t
)−1(

F (u, z)− F δ(u, z)
)∣∣ ≤ C(s− t)−1

for any u in [t, s] and any z in Rnd. Using the mollifier controls (A.4), it is enough to ask for
n∑
i=2

(s− t)−
1
αi δ

γi+β
1+α(i−1)
i ≤ C(s− t)−1.

Recalling that γi := 1 + α(i− 2) by assumption (R), this is true if we fix for example,

δi = (s− t)
γi
α

1+α(i−1)
γi+β for i in J2, nK. (A.6)

After this introductive part, we start controlling the last component of the flow. By construction of θt,s, we
can write that∣∣(θt,s(x)− θt,s(x′))n

∣∣ =
∣∣∣(x− x′)n +

∫ s

t

{[
A(θt,v(x)− θt,v(x′))

]
n

+ Fn(v,θt,v(x))− Fn(v,θt,v(x′))
}
dv
∣∣∣

≤ |(x− x′)n|+
∫ s

t

{
An,n−1|(θt,v(x)− θt,v(x′))n−1|+

∣∣Fn(v,θt,v(x))− Fn(v,θt,v(x′))
∣∣} dv (A.7)

where in the last passage we have exploited the sub-diagonal structure of A (cf. Equation (1.2)). If we focus
only on the last term involving the difference of the drifts, It holds now that∣∣Fn(v,θt,v(x))− Fn(v,θt,v(x′))

∣∣ ≤ ∣∣Fn(v,θt,v(x))± F δn(v,θt,v(x))− Fn(v,θt,v(x′))± F δn(v,θt,v(x′))
∣∣

≤
∣∣Fn(v,θt,v(x))−F δn(v,θt,v(x))

∣∣+ ∣∣Fn(v,θt,v(x′))−F δn(v,θt,v(x′))
∣∣+ ∣∣F δn(v,θt,v(x))−F δn(v,θt,v(x′))

∣∣.
Using the controls (A.4), (A.5) on the mollified drifts, we then write from (A.7) and the previous equation
that∣∣(θt,s(x)− θt,s(x′))n

∣∣ ≤
|(x− x′)n|+ 2(s− t)δ

γn+β
1+α(n−1)
n + C

∫ s

t

{∣∣(θt,v(x)− θt,v(x′))n−1
∣∣+ δ

γn+β
1+α(n−1)−1
n

∣∣(θt,v(x)− θt,v(x′))n
∣∣} dv.
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We now apply the Grönwall lemma to show that∣∣(θt,s(x)− θt,s(x′))n
∣∣ ≤ C

[
|(x− x′)n|+ (s− t)δ

γn+β
1+α(n−1)
n +

∫ s

t

∣∣(θt,v(x)− θt,v(x′))n−1
∣∣ dv].

From our previous choice for δn (cf. Equation (A.6)), we know that (s− t)−
1
αn δ

γn+β
1+α(n−1)
n ≤ C(s− t)−1 and

thus, we can rewrite the last inequality as∣∣(θt,s(x)− θt,s(x′))n
∣∣ ≤ C

[∣∣(x− x′)n∣∣+ (s− t)
1+α(n−1)

α +
∫ s

t

∣∣(θt,v(x)− θt,v(x′))n−1
∣∣ dv]. (A.8)

We would like now to obtain a similar control on the (n− 1)-th term. As already done at the beginning of
the proof, we can write that

∣∣(θt,s(x)− θt,s(x′))n−1
∣∣ ≤ ∣∣(x− x′)n−1

∣∣+ Cδ
γn−1+β

1+α(n−2)
n−1 (s− t) +

∫ s

t

∣∣(θt,v(x)− θt,sv(x′))n−2
∣∣

+ δ
γn−1+β

1+α(n−2)−1
n−1

∣∣(θt,v(x)− θt,v(x′))n−1
∣∣+
∣∣(θt,v(x)− θt,v(x′))n

∣∣ γn−1+β
1+α(n−1) dv

We then apply the Grönwall lemma to find that

∣∣(θt,s(x)− θt,s(x′))n−1
∣∣ ≤ C

[∣∣(x− x′)n−1
∣∣+ δ

γn−1+β
1+α(n−2)
n−1 (s− t)

+
∫ s

t

{∣∣(θt,v(x)− θt,sv(x′))n−2
∣∣+
∣∣(θt,v(x)− θt,v(x′))n

∣∣ γn−1+β
1+α(n−1)

}
dv
]
.

Remembering our previous choice of δn−1, it holds now that

∣∣(θt,s(x)− θt,s(x′))n−1
∣∣ ≤ C

[
|(x− x′)n−1|+ (s− t)

1+α(n−2)
α +

∫ s

t

∣∣(θt,v(x)− θt,v(x′))n−2
∣∣

+
∣∣(θt,v(x)− θt,v(x′))n

∣∣ γn−1+β
1+α(n−1) dv

]
. (A.9)

We then use equation (A.8) and the Jensen inequality to write∣∣(θt,s(x)− θt,s(x′))n−1
∣∣

≤ C
[
|(x− x′)n−1|+ (s− t)

1+α(n−2)
α +

∫ s

t

{∣∣(θt,v(x)− θt,v(x′))n−2
∣∣+
∣∣(x− x′)n∣∣ γn−1+β

1+α(n−1)

+ (v − t)
γn−1+β

α +
(∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣ dω) γn−1+β

1+α(n−1)}
dv
]
. (A.10)

The idea now is to use Grönwall lemma again. To do so, we firstly move the exponent from the last integral
term involving the (n− 1)-th term using the Young inequality:

(∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣ dω) γn−1+β

1+α(n−1) ≤ B
− 1+α(n−1)

γn−1+β

∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣ dω +B

1+α(n−1)
2α−β

for a quantity B to be fixed later.
Since we need homogeneity with respect to time in equation (A.9), we choose B such that

B
1+α(n−1)

2α−β = (v − t)
γn−1+β

α ⇔ B = (v − t)
γn−1+β

α
2α−β

1+α(n−1) .
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Plugging it into the general expression (A.10), we find that

∣∣(θt,s(x)− θt,s(x′))n−1
∣∣ ≤ C

[
|(x− x′)n−1|+ (s− t)

1+α(n−2)
α

+
∫ s

t

{∣∣(θt,v(x)− θt,v(x′))n−2
∣∣+
∣∣(x− x′)n∣∣ γn−1+β

1+α(n−1) + (v − t)
γn−1+β

α

+ (v − t)
β
α−2

∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣ dω} dv]

≤ C
[
|(x− x′)n−1|+ (s− t)

1+α(n−1)
α + (s− t)

∣∣(x− x′)n∣∣ γn−1+β
1+α(n−1) + (s− t)

γn−1+β+α
α

+
∫ s

t

{∣∣(θt,v(x)− θt,v(x′))n−2
∣∣+ (v − t)

β
α−1 sup

ω∈[t,v]

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣} dv].

Since the previous inequality is also true for any s in [t, s], it follows that

sup
s∈[0,s]

∣∣(θt,s(x)− θt,s(x′))n−1
∣∣ ≤ C

[
|(x− x′)n−1|+ (s− t)

1+α(n−2)
α + (s− t)

∣∣(x− x′)n∣∣ γn−1+β
1+α(n−1)

+ (s− t)
γn−1+β+α

α +
∫ s

t

{∣∣(θt,v(x)− θt,v(x′))n−2
∣∣+ (v − t)

β
α−1 sup

ω∈[t,v]

∣∣(θt,ω(x)− θt,ω(x′))n−1
∣∣} dv].

We can finally apply the Grönwall lemma to show that for any s in [t, T ], there exists a constant C such that∣∣(θt,s(x)− θt,s(x′))n−1
∣∣

≤ C
[
|(x− x′)n−1|+ (s− t)

1+α(n−2)
α + (s− t)|(x− x′)n|

γn−1+β
1+α(n−1) +

∫ s

t

∣∣(θt,v(x)− θt,v(x′))n−2
∣∣ dv].

Moreover, thanks to the Young inequality we know that

(s− t)
∣∣(x− x′)n∣∣ γn−1+β

1+α(n−1) ≤ C
{

(s− t)
1+α(n−2)

α + |(x− x′)n|
γn−1+β

1+α(n−1)
1+α(n−2)
1+α(n−3)

}
and remembering that d(x,x′) ≤ 1 by hypothesis,

|(x− x′)n|
γn−1+β

1+α(n−1)
1+α(n−2)
1+α(n−3) ≤ |(x− x′)n|

γn−1+β
γn−1

1+α(n−2)
1+α(n−1) ≤ |(x− x′)n|

1+α(n−2)
1+α(n−1) .

We then use it to write for any v in [t, T ],∣∣(θt,v(x)− θt,v(x′))n−1
∣∣

≤ C
[
|(x− x′)n−1|+ (v − t)

1+α(n−2)
α + |(x− x′)n|

1+α(n−2)
1+α(n−1) +

∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−2
∣∣ dω].

Going back to equation (A.8), we plug in the last bound to find that

∣∣(θt,s(x)− θt,s(x′))n
∣∣ ≤ C

[
|(x− x′)n|+ (s− t)

1+α(n−1)
α + (s− t)|(x− x′)n−1|

+ (s− t)|(x− x′)n|
1+α(n−2)
1+α(n−1) +

∫ s

t

∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−2
∣∣ dωdv]

≤ C
[
|(x− x′)n|+ (s− t)

1+α(n−1)
α + |(x− x′)n−1|

1+α(n−1)
1+α(n−2) +

∫ s

t

∫ v

t

∣∣(θt,ω(x)− θt,ω(x′))n−2
∣∣ dωdv]

where in the last passage we used again the Young inequality to show that

(s− t)|(x− x′)n−1| ≤ C(s− t)
1+α(n−1)

α + |(x− x′)n−1|
1+α(n−1)
1+α(n−2)

and
(s− t)|(x− x′)n|

1+α(n−2)
1+α(n−1) ≤ C(s− t)

1+α(n−1)
α + |(x− x′)n|.
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This approach may be naturally iterated up to the first term of the chain, so that∣∣(θt,s(x)− θt,s(x′))n
∣∣

≤ C
[ n∑
j=2
|(x− x′)j |

1+α(n−1)
1+α(j−1) + (s− t)

1+α(n−1)
α +

∫ vn=s

t

dvn−1· · ·
∫ v=2

t

dv1
∣∣(θt,v1(x)− θt,v1(x′))1

∣∣].
In a similar manner, we can show for any i in J2, nK,∣∣(θt,s(x)− θt,s(x′))i

∣∣
≤ C

[ n∑
j=2
|(x− x′)j |

1+α(i−1)
1+α(j−1) + (s− t)

1+α(i−1)
α +

∫ vi=s

t

dvi−1· · ·
∫ v=2

t

dv1
∣∣(θt,v1(x)− θt,v1(x′))1

∣∣]. (A.11)

Since all the non-integral terms in (A.11) are compatible with the statement of the lemma, it remains to find
the proper bound for the first component of the flow. As before, let us consider s in [t, s]. We can write

|(θt,s(x)− θt,s(x′))1| ≤ |(x− x′)1|+ C

n∑
j=1

∫ s

t

|(θt,v(x)− θt,v(x′))j |
β

1+α(j−1) dv

or, passing to the supremum on both sides,

sup
s∈[t,s]

|(θt,s(x)− θt,s(x′))1|

≤ |(x− x′)1|+ C
{

(s− t)
(

sup
v∈[t,s]

|(θt,v(x)− θt,v(x′))1|
)β +

n∑
j=2

∫ s

t

|(θt,v(x)− θt,v(x′))j |
β

1+α(j−1) dv
}
.

Using equation (A.11), it holds now that

sup
s∈[t,s]

(|θt,s(x)− θt,s(x′))1| ≤ |(x− x′)1|+ C
{

(s− t)
(

sup
v∈[t,s]

|(θt,v(x)− θt,v(x′))1|
)β

+
n∑
j=2

[
(s− t)

(
(s− t)

1+α(j−1)
α +

n∑
k=2
|(x− x′)k|

1+α(j−1)
1+α(k−1) + (s− t)j−1 sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

) β
1+α(j−1)

])
.

(A.12)

We then apply the Jensen inequality to show that

sup
s∈[t,s]

(|θt,s(x)−θt,s(x′))1| ≤ |(x−x′)1|+C
{

(s− t)
[

sup
v∈[t,s]

|(θt,v(x)−θt,v(x′))1|
]β +

n∑
j=2

C(s− t)
[
(s− t)

β
α

+
n∑
k=2
|(x− x′)k|

β
1+α(k−1) + (s− t)

(j−1)β
1+α(j−1) sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

β
1+α(j−1)

]}
≤ C

{
|(x− x′)1|+ (s− t)

α+β
α + (s− t)

n∑
k=2
|(x− x′)k|

β
1+α(k−1)

+
n∑
j=1

(s− t)1+ (j−1)β
1+α(j−1) sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

β
1+α(j−1)

}
. (A.13)

From Young inequality, we can deduce now that

(s− t)|(x− x′)k|
β

1+α(k−1) ≤ C
(
(s− t)

1
1−β + |(x− x′)k|

1
1+α(k−1)

)
and

(s− t)1+ (j−1)β
1+α(j−1) sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

β
1+α(j−1) ≤ C

{
(s− t)

1+(α+β)(j−1)
1+α(j−1)−β + sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

}
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Plugging these inequalities in the main one (A.13), we find that

sup
s∈[t,s]

(|θt,s(x)− θt,s(x′))1| ≤ C
{
|(x− x′)1|+ (s− t)

α+β
α +

n∑
k=2
|(x− x′)k|

1
1+α(k−1)

+
n∑
j=1

(s− t)
1+(α+β)(j−1)
1+α(j−1)−β + sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

}
≤ C

{
(s− t)

α+β
α + (s− t)

1
1−β + d(x,x′) + (s− t)

1+(α+β)(j−1)
1+α(j−1)−β + sup

v∈[t,s]
|(θt,v(x)− θt,v(x′))1|

}
Remembering that s− t ≤ T − t ≤ 1, it finally holds that

|θt,s(x)− θt,s(x′))1| ≤ C
(
(s− t)1/α + d(x,x′)

)
since by assumption (P),

α+ β

α
>

1
1− β >

1
α

and
1 + (α+ β)(j − 1)
1 + α(j − 1)− β = 1 + βj

1 + αj − (α+ β) > 1 + βj

αj
> 1 +

(1− α
α

)
= 1

α
.

Plugging this control in equation (A.11), we then conclude since∣∣(θt,s(x)− θt,s(x′))i
∣∣

≤ C
(
d1+α(i−1)(x,x′) + (s− t)

1+α(i−1)
α + (s− t)i−1 sup

s∈[t,s]
(|θt,s(x)− θt,s(x′))1|

)
≤ C

(
d1+α(i−1)(x,x′) + (s− t)

1+α(i−1)
α + (s− t)i−1((s− t)1/α + d(x,x′)

))
≤ C

(
(s− t)

1+α(i−1)
α + d1+α(i−1)(x,x′)

)
,

using again the Young inequality in the last passage. The proof is complete.

We can now prove the two results (Lemmas 15 and Lemma 16) concerning the sensitivity of the frozen shift
m̃τ,ξ
t,s .

Proof of Lemma 15. From the integral representation of m̃t,x
t,s (y) (cf. Equation (3.4)), we can write that

∣∣(m̃t,x
t,s (y)− m̃t,x′

t,s (y′)
)

1

∣∣ ≤ ∫ s

t

∣∣F1(v,θt,v(x))− F1(v,θt,v(x′))
∣∣ dv
≤ C‖F ‖H

∫ s

t

dβ
(
θt,v(x),θt,v(x′)

)
dv

where in the second passage we used that F1 is in Cβb,d(Rnd). Thanks to the Control on the flows (Lemma
14), it then holds that∣∣(m̃t,x

t,s (y)− m̃t,x′

t,s (y′)
)

1

∣∣ ≤ C‖F ‖H(s− t)
[
dβ(x,x′) + (s− t)

β
α

]
and we have concluded.

Proof of Lemma 16. We know from Lemma 2 that m̃t,x′

t,t0 (x′) = θt,t0(x′). Fixed i in J1, nK, we can then
write that(

m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)
i

=
(
m̃t,x
t,t0(x′)− θt,t0(x′)

)
i

=
(
m̃t,x
t,t0(x′)− θt,t0(x)

)
i
+
(
θt,t0(x)− θt,t0(x′)

)
i
.
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We start focusing on the first term of the above expression. From the integral representation of m̃t,x
t,t0(x′)

and θt,t0(x), it holds that

m̃t,x
t,t0(x′)− θt,t0(x) = x′ − x+

∫ t0

t

A
[
m̃t,x
t,v (x′)− θt,v(x)

]
dv. (A.14)

Remembering from (1.2) that A is sub-diagonal, it follows that

(
m̃t,x
t,t0(x′)− θt,t0(x)

)
i

= (x′ − x)i +Ai,i−1

∫ t0

t

(
m̃t,x
t,v (x′)− θt,v(x)

)
i−1 dv (A.15)

for any i in J2, nK and (
m̃t,x
t,t0(x′)− θt,t0(x)

)
1 = (x′ − x)1.

Iterating the process, we can find that

∣∣(m̃t,x
t,t0(x′)− θt,t0(x)

)
i

∣∣ ≤ C

i∑
k=1

∣∣(x′ − x)k
∣∣(t0 − t)i−k.

On the other side, the integral representation of θτ,s(ξ) (Equation (3.1)) allows us to write that(
θt,t0(x)− θt,t0(x′)

)
i

= (x− x′)i +Ai,i−1

∫ t0

t

{(
θt,t0(x)− θt,t0(x′)

)
i−1 + Fi(v,θt,v(x))− Fi(v,θt,v(x′))

}
dv (A.16)

for any i in J2, nK and

(
θt,t0(x)− θt,t0(x′)

)
1 = (x− x′)1 +

∫ t0

t

{
F1(v,θt,v(x))− F1(v,θt,v(x′))

}
dv. (A.17)

Fixed i in J2, nK, it then follows from (A.14) and (A.16) that

∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)
i

∣∣ ≤ C‖F ‖H
(i−1∑
k=1
|(x′ − x)k|(t0 − t)i−k

+
∫ t0

t

{∣∣(θt,v(x)− θt,v(x′)
)
i−1

∣∣+
n∑
j=i

∣∣(θt,v(x)− θt,v(x′)
)
j

∣∣ γi+β
1+α(j−1)

}
dv
)
.

Also, from (A.15) and (A.17), it holds that

∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)

1

∣∣ ≤ C‖F ‖H
∫ t0

t

n∑
j=1

∣∣(θt,v(x)− θt,v(x′)
)
j

∣∣ β
1+α(j−1) dv.

Using now Lemma 14, we can show that

∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)
i

∣∣ ≤ C‖F ‖H
(i−1∑
k=1
|(x′ − x)k|(t0 − t)i−k + (t0 − t)

1+α(i−2)
α +1

+ (t0 − t)d1+α(i−2)(x,x′) + (t0 − t)
1+α(i−2)+β

α +1 + (t0 − t)d1+α(i−2)+β(x,x′)
)

for any i in J2, nK and∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)

1

∣∣ ≤ C‖F ‖H(t0 − t)
β+α
α + (t0 − t)dβ(x,x′).
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Since t0 − t = c0d
α(x,x′) by Equation (4.16), we can conclude that

∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)
i

∣∣ ≤ C‖F ‖H
(i−1∑
k=1

d1+α(k−1)(x′,x)ci−k0 dα(i−k)(x,x′) + c
1+α(i−1)

α
0 d1+α(i−1)(x,x′)

+ c0d
1+α(i−1)(x,x′) + c

1+α(i−2)+β
α +1

0 d1+α(i−1)+β(x,x′) + c0d
1+α(i−1)+β(x,x′)

)
≤ C‖F ‖H

[(
c0 + c

1+α(i−1)
α

0
)
d1+α(i−1)(x,x′) +

(
c0 + c

1+α(i−1)+β
α

0
)
d1+α(i−1)+β(x,x′)

]
≤ Cc0‖F ‖Hd1+α(i−1)(x,x′)

for any i in J2, nK and∣∣(m̃t,x
t,t0(x′)− m̃t,x′

t,t0 (x′)
)

1

∣∣ ≤ C‖F ‖H
(
c
β+α
α

0 + c0
)
dα+β(x,x′) ≤ Cc0‖F ‖Hdα+β(x,x′)

where in the last passage we used that c0 ≤ 1 and d(x,x′) ≤ 1. After summing all the terms together at the
right scale, we finally show that

d(m̃t,x
t,t0(x′), m̃t,x′

t,t0 (x′)) ≤ Cc
1

1+α(n−1)
0 ‖F ‖Hd(x,x′)

thanks to convexity inequalities and c0 ≤ 1.

We conclude this section showing the reverse Taylor formula which was used in the proof of Proposition 17 in
the diagonal regime to handle the discontinuity term:
Lemma 23 (Reverse Taylor Expansion). Let γ be in (1, 2), φ a function in Cγb,d(Rnd) and x,x′ two points
in Rnd. Then, there exists a constant C := C(γ) such that

|Dx1φ(x)−Dx1φ(x′)| ≤ C‖φ‖Cγ
b,d
dγ−1(x,x′).

Proof. We start rewriting the left-hand side in the following way

Dx1φ(x)−Dx1φ(x′)

=
(∫ 1

0
Dx1φ(x)−Dx1φ(x1 + λd(x,x′), (x)2:n) dλ

)
−
(∫ 1

0
Dx1φ(x′)−Dx1φ(x1 + λd(x,x′), (x′)2:n) dλ

)
−
(∫ 1

0
Dx1φ(x1 + λd(x,x′), (x′)2:n)−Dx1φ(x1 + λd(x,x′), (x)2:n) dλ

)
=: I1 + I2 + I3.

The first two components can be treated directly using that Dx1φ is in Cγ−1(Rd) with respect to the first
non-degenerate variable. Indeed,

|I1| ≤
∫ 1

0
|Dx1φ(x)−Dx1φ(x1 + λd(x,x′), (x)2:n)| dλ

≤ C‖φ‖Cγ
∫ 1

0
|λd(x,x′)|γ−1 dλ ≤ C‖φ‖Cγdγ−1(x,x′)

and

|I2| ≤
∫ 1

0
|Dx1φ(x′)−Dx1φ(x1 + λd(x,x′), (x′)2:n)| dλ

≤ C‖φ‖Cγ
∫ 1

0
|(x′ − x)1 + λd(x,x′)|γ−1 dλ ≤ C‖φ‖Cγdγ−1(x,x′)

where in the last expression we used Young inequality.
To control the last term, we assume for the sake of brevity to be in the scalar case, i.e. d = 1. In the general
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setting, the proof below can be reproduced component-wise. The idea is to use a reverse Taylor expansion to
pass from the derivative to the function itself. Namely,

|I3| = 1
d(x,x′)

∣∣∣∫ 1

0

[
∂λφ(x1 + λd(x,x′), (x′)2:n)− ∂λφ(x1 + λd(x,x′), (x)2:n)

]
dλ
∣∣∣

≤ 1
d(x,x′)

∣∣φ(x1 + d(x,x′), (x′)2:n)− φ(x1, (x′)2:n) + φ(x1 + d(x,x′), (x)2:n)− φ(x)
∣∣

≤ C‖φ‖Cγdγ−1(x,x′).
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