Experimental characterization and numerical modeling of crack initiation in rhombus hole PMMA specimens under compression - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue European Journal of Mechanics - A/Solids Année : 2019

Experimental characterization and numerical modeling of crack initiation in rhombus hole PMMA specimens under compression

Résumé

Under compression, mode I cracking in the loading direction is observed in PMMA rhombus hole specimens. Except for specimens containing flaws, spontaneous initiation is observed experimentally with the instantaneous formation of a crack in undamaged specimens. With increasing hole angle and size, the initiation force decreases whereas the crack arrest length increases. Similar influences of size and angle are predicted numerically by 2D and 3D finite element modeling of crack initiation using the coupled criterion, which allows crack initiation surface, shape and loading level to be determined. Initiation force and crack length depend on the specimen geometry and on boundary conditions. Compared to the 3D case, 2D modeling provides similar estimates of the crack length in the specimen middle plane and overestimates the initiation force. The 3D crack shapes predicted numerically qualitatively look like the crack shapes observed experimentally. A reasonable agreement between numerical predictions and experimental measurements of initiation force and crack length is obtained.
Fichier principal
Vignette du fichier
CC_CompVnotch_17102018_DL.pdf (6.92 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02302541 , version 1 (01-10-2019)

Identifiants

Citer

Aurélien Doitrand, Rafael Estevez, Dominique Leguillon. Experimental characterization and numerical modeling of crack initiation in rhombus hole PMMA specimens under compression. European Journal of Mechanics - A/Solids, 2019, 76, pp.290-299. ⟨10.1016/j.euromechsol.2019.04.013⟩. ⟨hal-02302541⟩
50 Consultations
44 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More