Généralisation de la propriété de monotonie de la all-confidence pour l'extraction de motifs intéressants non fréquents - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Généralisation de la propriété de monotonie de la all-confidence pour l'extraction de motifs intéressants non fréquents

Résumé

Différentes études ont montré les limites du couple support/confiance dans les algorithmes de type Apriori, tant du point de vue quantitatif (quantité des règles), que qualitatif (redondance, intérêt, pépites de connaissance). Une solution consiste à concentrer au plus tôt la recherche sur les règles intéressantes en utilisant des mesures d'intérêt possédant des propriétés algorithmiques, mais aussi des capacités à mettre en évidence des règles d'un intérêt certain. Celles-ci permettent alors de trouver les règles d'intérêt élevé, sans utiliser un élagage préalable par la condition de support. Elles rendent également possible la recherche efficace de pépites de connaissance. C'est le cas de la all-confidence (ou h-confidence), transformation antimonotone de la confiance. Nous nous intéressons ici à la possibilité d'appliquer une transformation semblable à d'autres mesures, au travers d'une condition nécessaire s'appuyant sur un cadre formel que nous définissons. Nous montrons cependant que parmi les 27 mesures étudiées ici, seules 5 d'entre elles peuvent être transformées en une mesure antimonotone. Ainsi bien que très prometteuse, cette propriété d'antimonotonie n'est à l'heure actuelle applicable qu'à peu de mesures.
Fichier principal
Vignette du fichier
le-bras_etal_QDC_2009.pdf (173.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02301536 , version 1 (03-06-2021)

Identifiants

  • HAL Id : hal-02301536 , version 1

Citer

Yannick Le Bras, Philippe Lenca, Stéphane Lallich, Sorin Moga. Généralisation de la propriété de monotonie de la all-confidence pour l'extraction de motifs intéressants non fréquents. QDC 2009 : atelier qualité des données et de connaissances, en conjonction avec extraction et gestion des connaissances, Jan 2009, Strasbourg, France. pp.17 - 24. ⟨hal-02301536⟩
60 Consultations
92 Téléchargements

Partager

More