Rejoinder on: Minimal penalties and the slope heuristics: a survey - Archive ouverte HAL Access content directly
Journal Articles Journal de la Société Française de Statistique Year : 2019

Rejoinder on: Minimal penalties and the slope heuristics: a survey

Abstract

This text is the rejoinder following the discussion of a survey paper about minimal penalties and the slope heuristics (Arlot, 2019. Minimal penalties and the slope heuristics: a survey. Journal de la SFDS). While commenting on the remarks made by the discussants, it provides two new results about the slope heuristics for model selection among a collection of projection estimators in least-squares fixed-design regression. First, we prove that the slope heuristics works even when all models are significantly biased. Second, when the noise is Gaussian with a general dependence structure, we compute expectations of key quantities, showing that the slope heuristics certainly is valid in this setting also.
Fichier principal
Vignette du fichier
survey_penmin_rejoinder.pdf (150.08 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission
Loading...

Dates and versions

hal-02300688 , version 1 (30-09-2019)

Identifiers

Cite

Sylvain Arlot. Rejoinder on: Minimal penalties and the slope heuristics: a survey. Journal de la Société Française de Statistique, 2019, Minimal penalties and the slope heuristics: a survey, 160 (3), pp.158-168. ⟨hal-02300688⟩
80 View
35 Download

Altmetric

Share

Gmail Facebook X LinkedIn More